Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] "Concrete" multiset?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] "Concrete" multiset?


chronological Thread 
  • From: frederic.blanqui AT loria.fr
  • To: Edsko de Vries <devriese AT cs.tcd.ie>
  • Cc: Pierre Casteran <pierre.casteran AT labri.fr>, coq-club AT pauillac.inria.fr, color AT loria.fr
  • Subject: Re: [Coq-Club] "Concrete" multiset?
  • Date: Wed, 7 Nov 2007 13:44:26 +0100 (CET)
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On Wed, 7 Nov 2007, Edsko de Vries wrote:

But that means that I have to prove something for every property P I
need to prove stuff about (that P is a "morphism", whatever I that is)
-- which I don't want to have to do :) I am looking for an
implementation of multisets which has the property that (union M1 M2)
really *equals* union M2 M1, so that I can prove this property without
any further hypotheses about P (this would be possible if the multiset
uses some sort of ordering on the elements, for example).

proving that P is a morphism may not be so difficult (various morphisms are already proved in color). but i understand your point. then, as said by pierre letouzay, you could re-use pierre's multiset module with maps implemented by sorted lists and try to prove that [=] is = (i think that you need a total ordering on your elements to prove that). alternatively, you could modify adam koprowski's multiset module in color by taking a total ordering as argument, defining union as the merging of the two (sorted) list arguments (giving a sorted list again), and defining meq by eq. this is interesting if you later need to use the multiset extension of some element ordering since color provides it. please, let us know if you write a new implementation of multisets. thanks.





Archive powered by MhonArc 2.6.16.

Top of Page