Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] newbie question

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] newbie question


chronological Thread 
  • From: "Balazs Vegvari" <balazs.vegvari AT gmail.com>
  • To: "Adam Chlipala" <adamc AT hcoop.net>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] newbie question
  • Date: Thu, 28 Aug 2008 07:28:58 +0200
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:to:subject:cc:in-reply-to:mime-version :content-type:content-transfer-encoding:content-disposition :references; b=IbX+ufKIEGq/8cs/1aq0RxhafRno3SP0HVYIOjcehmVa0RkfcQQToq/bNKDuamPKnH oFuenKXAXMOQ3xJ/WV+h2qJKpdIURdXUC7CFPhqIffnJPUTsmTqof76OPUdOPl92seDl cFY/r62336UV5KUYkQyjfb6iceILAUdSLxm4g=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

one thing came into my mind after reading documentation of the omega
tactic: what if omega could not solve a similar system, for example
adding a nonlinear product to the example? How would I prove this
manually in that case?

thanks,
Balazs

On Thu, Aug 28, 2008 at 7:17 AM, Balazs Vegvari
<balazs.vegvari AT gmail.com>
 wrote:
> Hi Adam,
>
> It worked, I really have to learn a lot.
>
>
> thanks,
> Balazs
>
> On Thu, Aug 28, 2008 at 12:06 AM, Adam Chlipala 
> <adamc AT hcoop.net>
>  wrote:
>> Balazs Vegvari wrote:
>>>
>>> I am just learning coq and I don't kow how to prove this:
>>>
>>> forall x y : Z, x <= y + 1 -> x <= y \/ x = y + 1
>>>
>>> Any suggestion is welcome.
>>>
>>
>> Did you have a particular constraint on the proof technique in mind?  Your
>> theorem statement falls into the theory of "quantifier-free linear
>> arithmetic," which is one of the most widely-used decidable theories.  The
>> [omega] tactic solves it instantly (after [intros]).
>>
>





Archive powered by MhonArc 2.6.16.

Top of Page