Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Proving a proper sublist is smaller

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Proving a proper sublist is smaller


chronological Thread 
  • From: Nadeem Abdul Hamid <nadeem AT acm.org>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] Proving a proper sublist is smaller
  • Date: Mon, 2 Mar 2009 13:35:27 -0500
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=sender:message-id:from:to:content-type:content-transfer-encoding :mime-version:subject:date:x-mailer; b=wPvwSfQ1ithDSLx8VSlKmd9ARznXW7qC9UtOgNm3cjHRp3EcKQl1SWK9P0U6Dwe9ii kvHXNHcOqdwsr8PIMU7YxHBZOI7hLGqCrD0juhaBoiDKI7LKse8ly6WBjRBJECjTzgL3 /YdAcRIUIkAoirBSDZg6kgAd5xOrJouic6j8I=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

I'm having trouble figuring out how to prove the statement below. What it's saying is that if every element in list A is also in list B, and then you know that there is an additional element in list B that's not in list A, then the size of list B must be larger than A. Whether I try induction on A or B (with either rearranged to be first), I run into problems at the very end. Can someone help me figure out this puzzle, a different way to prove it than direct induction on A/B, or if there is a reason why it's not true?

Lemma properSubset_smaller
  : forall (A B : list nat) (m:nat),
    (forall n, In n A -> In n B) ->
    In m B ->
    ~In m A ->
    length B > length A.

Thanks very much,

nadeem





Archive powered by MhonArc 2.6.16.

Top of Page