coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: dimitrisg7 <dvekris AT hotmail.com>
- To: coq-club AT pauillac.inria.fr
- Subject: [Coq-Club] Nth & dependent types.
- Date: Sun, 26 Apr 2009 04:24:47 -0700 (PDT)
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hello to everyone!
Is it possible to get the nth object (of type rel (nth ...) (nth ...)) in
the following inductive definition (I do not think that I can) or should I
make some changes in my definitions?
Section testing.
Set Implicit Arguments.
Variable A : Type.
Variable dA : A.
Variable B : Type.
Variable dB : B.
Variable rel: A -> B -> Type.
Inductive test : list A -> list B -> Type :=
| constr1 : test nil nil
| constr2 : forall a b al bl, rel a b -> test al bl -> test (a::al)(b::bl).
Definition nth_dep n al bl (t : test al bl) : rel(nth n al dA)(nth n bl dB).
Proof.
(* get nth object *)
Admitted.
End testing.
-----
Never say never.
--
View this message in context:
http://www.nabble.com/Nth---dependent-types.-tp23241301p23241301.html
Sent from the Coq mailing list archive at Nabble.com.
- [Coq-Club] Nth & dependent types., dimitrisg7
- Re: [Coq-Club] Nth & dependent types., Adam Koprowski
- Re: [Coq-Club] Nth & dependent types.,
Guillaume Melquiond
- Re: [Coq-Club] Nth & dependent types., dimitrisg7
Archive powered by MhonArc 2.6.16.