coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: dimitrisg7 <dvekris AT hotmail.com>
- To: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] Nth & dependent types.
- Date: Sun, 26 Apr 2009 05:19:37 -0700 (PDT)
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
<You are missing a hypothesis on default values:
<Variable rel_d : rel dA dB.
<(or a hypothesis stating that n is bounded by the length of al).
Thank you both. You have been really helpful.
I just wrote a found nth' which is like nth, but instead of the dummy value
takes a prop that satisfies the property you just mentioned and get the
following:
IHn : forall (al : list A) (bl : list B),
test al bl ->
forall (H1 : n < length al) (H2 : n < length bl),
rel (nth' al n H1) (nth' bl n H2)
============================
forall (al : list A) (bl : list B),
test al bl ->
forall (H1 : S n < length al) (H2 : S n < length bl),
rel (nth' al (S n) H1) (nth' bl (S n) H2)
That should be provable. How though? I am not strong with Coq.
-----
Never say never.
--
View this message in context:
http://www.nabble.com/Nth---dependent-types.-tp23241301p23241693.html
Sent from the Coq mailing list archive at Nabble.com.
- [Coq-Club] Nth & dependent types., dimitrisg7
- Re: [Coq-Club] Nth & dependent types., Adam Koprowski
- Re: [Coq-Club] Nth & dependent types.,
Guillaume Melquiond
- Re: [Coq-Club] Nth & dependent types., dimitrisg7
Archive powered by MhonArc 2.6.16.