Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] automatically generated induction principles

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] automatically generated induction principles


chronological Thread 
  • From: Nicolas Oury <Nicolas.Oury AT ed.ac.uk>
  • To: coq-club AT pauillac.inria.fr
  • Cc: Neil Ghani <Neil.Ghani AT cis.strath.ac.uk>
  • Subject: Re: [Coq-Club] automatically generated induction principles
  • Date: Mon, 22 Jun 2009 15:36:28 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Dear all,


Le 22 juin 09 à 13:08, Lionel Elie Mamane a écrit :


I believe they are added as axioms every time an inductive data type
is declared.

That is not correct. They are just automatically generated
definitions. They are as much axioms as proofs generated with "auto."
:)

I am not sure I agree. I am not really a specialist of this point so I may be completly wrong.
But it seems to me that the generated proofs relie on a fixpoint construct that is
somehow specialised to the inductive family it works on.

These constructs are equiped with typing rules and elimination behaviour that depends on
the inductive family.
The justification of these new rules is somehow made at a meta level and uses some
exterior criterias: strict positivity and structural guardedness.

CIC includes a family of such typing/reduction rules for any acceptable inductive definitions.
In the link you sent, the typing rule for match is given
"[...] provided I is an inductive type in a declaration Ind(Δ)[r] (ΓI:=ΓC ) with
ΓC = [c1:C1;…;cn:Cn] and cp1…cpl are the only constructors of I."

This is not really different from adding new eliminators and reduction rules for eliminators.

To try to answer Neil's questions:

1. I think the functors has to be strictly positive.
2. The fact that it is correct to add new typing/reduction rules for each defined strictly positive inductive family is justified
in at least two places:
- Benjamin Werner's PhD.
- Bruno Barras's Phd proves properties CIC in Coq itself.

Best regards,

Nicolas


--
The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.





Archive powered by MhonArc 2.6.16.

Top of Page