Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Inequality of coinductive terms?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Inequality of coinductive terms?


chronological Thread 
  • From: Edsko de Vries <edskodevries AT gmail.com>
  • To: coq-club <coq-club AT pauillac.inria.fr>
  • Subject: [Coq-Club] Inequality of coinductive terms?
  • Date: Thu, 17 Sep 2009 15:27:58 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hi,

Suppose we have a simple coinductive data type:

CoInductive T : Set :=
  | A : T
  | B : T
  | C : T -> T.

Now there are terms that live in T such as

  C (C (C ... A))
  C (C (C ... B))

with infinitely many C's followed by an A or a B. However, it seems to me that these terms are not (constructively) definable.

Can I prove that if for [t1 t2 : T] we have [t1 <> t2], where [t1] and [t2] are constructively definable, then I must be able to distinguish between [t1] and [t2] in finite time? How can I define "constructively definable"?

Any pointers to relevant literature would be appreciated,

Edsko





Archive powered by MhonArc 2.6.16.

Top of Page