coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Fl�vio Leonardo Cavalcanti de Moura <flaviomoura AT unb.br>
- To: coq-club AT pauillac.inria.fr
- Subject: [Coq-Club] eval compute rule
- Date: Mon, 19 Oct 2009 15:41:46 -0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hi,
I am building an exercise in proposicional logic for undergraduate
students. I defined a recursive function to propagate negations over
conjunctions and disjunction (de Morgan laws) and to eliminate double
negations. Here is the function:
Function nnf (t:fprop) {measure flength t}: fprop :=
match t with
| neg(neg F) => nnf F
| con F G => con (nnf F) (nnf G)
| dis F G => dis (nnf F) (nnf G)
| neg(con F G) => dis (nnf (neg F)) (nnf (neg G))
| neg(dis F G) => con (nnf (neg F)) (nnf (neg G))
| _ => t
end.
The type fprop is inductive. The proof of termination of nnf is simple;
when I try to use "Eval compute" to run some examples the reduction is
not performed...
When I try
Eval compute in (nnf(neg(con (var "p") (var "q")))).
I get
= let (v, _) := nnf_terminate (neg (con (var "p") (var "q"))) in v
: fprop
What should I do in order to get (dis (neg (var "p")) (neg (var "q")))?
Thanks in advance,
Flavio.
- [Coq-Club] eval compute rule, Flávio Leonardo Cavalcanti de Moura
- Re: [Coq-Club] eval compute rule,
AUGER
- Re: [Coq-Club] eval compute rule, Flávio Leonardo Cavalcanti de Moura
- Re: [Coq-Club] eval compute rule,
AUGER
Archive powered by MhonArc 2.6.16.