Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] specializing without repeating large expressions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] specializing without repeating large expressions


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] specializing without repeating large expressions
  • Date: Mon, 15 Mar 2010 09:34:04 -0400

Ian Lynagh wrote:
Lemma Lem : forall (x : nat), (x = 3).
Proof.
intros.
assert (forall (y : nat), (x = y) ->
         forall (z : nat), (x = z) ->  (x = 3)).
     admit.

(* Suppose we are here, "nat"s can be shown to exist, and "x = y"
    and "x = z" are provable (we'll just pretend and use admit).
    How can we write this proof without writing "nat" or "x = y"?
    (in a real proof, "nat" and "x = y" would be large expressions I don't
    want to have to repeat) *)

I don't know if your underlying question has some deeper aspect to it, but [eauto] solves the remaining subgoal here. If that doesn't work in your real case, then I, at least, would need an example that better exposes the key difficulties.



Archive powered by MhonArc 2.6.16.

Top of Page