coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Damien Pous <Damien.Pous AT ens-lyon.fr>
- To: Adam Koprowski <adam.koprowski AT gmail.com>
- Cc: coq-club <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] specializing without repeating large expressions
- Date: Mon, 15 Mar 2010 15:04:23 +0100
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:sender:in-reply-to:references:date :x-google-sender-auth:message-id:subject:from:to:cc:content-type; b=sgAfN1PQa9oaZKp+KIFyi/uLnQXx1OuShsly8Tbyf8QVePakDaVk9/057FBk64JRrc My3HpXo+Wd35zzXVRmUSqrm15fifRhmFdyzTgsk412mp+7ZeUga/0R5dcYYg7b4GXFUL Qv/6Wm62YmLBXQp7i+bjByQ51loRXCs+xtlxo=
A possibility is to use apply or eapply with the following term:
Definition apply A (x: A) B (f: A -> B) := f x.
Lemma Lem : forall (x : nat), (x = 3).
Proof.
intros.
assert (forall (y : nat), (x = y) ->
forall (z : nat), (x = z) -> (x = 3)).
admit.
eapply apply in H.
eapply apply in H.
assumption.
...
...
Hope this helps,
Damien
- [Coq-Club] specializing without repeating large expressions, Ian Lynagh
- Re: [Coq-Club] specializing without repeating large expressions,
Adam Chlipala
- Re: [Coq-Club] specializing without repeating large expressions,
Adam Koprowski
- Re: [Coq-Club] specializing without repeating large expressions, Damien Pous
- Re: [Coq-Club] specializing without repeating large expressions,
Adam Koprowski
- Re: [Coq-Club] specializing without repeating large expressions, Guillaume Melquiond
- Re: [Coq-Club] specializing without repeating large expressions,
Adam Chlipala
Archive powered by MhonArc 2.6.16.