Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] specializing without repeating large expressions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] specializing without repeating large expressions


chronological Thread 
  • From: Damien Pous <Damien.Pous AT ens-lyon.fr>
  • To: Adam Koprowski <adam.koprowski AT gmail.com>
  • Cc: coq-club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] specializing without repeating large expressions
  • Date: Mon, 15 Mar 2010 15:04:23 +0100
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:sender:in-reply-to:references:date :x-google-sender-auth:message-id:subject:from:to:cc:content-type; b=sgAfN1PQa9oaZKp+KIFyi/uLnQXx1OuShsly8Tbyf8QVePakDaVk9/057FBk64JRrc My3HpXo+Wd35zzXVRmUSqrm15fifRhmFdyzTgsk412mp+7ZeUga/0R5dcYYg7b4GXFUL Qv/6Wm62YmLBXQp7i+bjByQ51loRXCs+xtlxo=

A possibility is to use apply or eapply with the following term:

Definition apply A (x: A) B (f: A -> B) := f x.

Lemma Lem : forall (x : nat), (x = 3).
Proof.
intros.
assert (forall (y : nat), (x = y) ->
       forall (z : nat), (x = z) -> (x = 3)).
admit.
eapply apply in H.
eapply apply in H.
assumption.
...
...


Hope this helps,
Damien



Archive powered by MhonArc 2.6.16.

Top of Page