Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Insertion sorting on lists ... in the Coq standard library or where else?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Insertion sorting on lists ... in the Coq standard library or where else?


chronological Thread 
  • From: Catalin Hritcu <catalin.hritcu AT gmail.com>
  • To: Matthew Brecknell <matthew AT brecknell.net>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Insertion sorting on lists ... in the Coq standard library or where else?
  • Date: Wed, 31 Mar 2010 11:42:21 +0200
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :cc:content-type; b=JiInEF9/aCGkr9UFTbKE0GN8UVZyFKXEP+nuznm6XEG+cZcZ7t7BdKZWVszF/uph8W oefnyxk4U3plMJA167L4ig3KFmBpQboXhMgiMjYRlQJl0G8PbG6Jy+jObKktC31jtDlz 62e/enEEKo5ROA/oEEl3U1szcLRU8DVQVXXM4=

Hi Matthew,

Thanks a lot for the references. None of them was precisely what I
wanted, but I could use them as a starting point for writing my own
implementation [1]. It's indeed easy, since I don't really care about
stability.

About the total preorder vs. total partial order issue: I didn't need
antisymmetry in my proofs.

Thanks,
Catalin


[1] http://www.infsec.cs.uni-saarland.de/dyn/hritcu/temp/InsertionSorting.v

On Wed, Mar 31, 2010 at 12:15 AM, Matthew Brecknell
<matthew AT brecknell.net>
 wrote:
> Hi Catalin,
>
> Catalin Hritcu wrote:
>> I have a very basic question: is there any implementation of insertion
>> sorting on lists in the Coq standard library?
>
> I don't know about the standard library, but the first chapter of the
> Coq'Art book [1] shows a simple verification of a functional insertion
> sort implementation for lists of integers. The Coq script is available
> from the website. IIRC, the example's formalisation of sortedness
> requires a decidable total order, which means there is no need to be
> concerned with the stability of the sorting algorithm.
>
> [1]http://www.labri.u-bordeaux.fr/perso/casteran/CoqArt/index.html
>
> If you are interested in generalising to lists of arbitrary type with a
> decidable total *pre*order, including verification of stability, you
> might like to take a look at Xavier Leroy's development [2]. This is for
> a merge-sort algorithm, which involves some non-trivial recursion
> schemes, so the development is considerably more involved.
>
> [2]http://moscova.inria.fr/~xleroy/coq/Mergesort.html
>
> Regards,
> Matthew
>



Archive powered by MhonArc 2.6.16.

Top of Page