Skip to Content.
Sympa Menu

coq-club - [Coq-Club] dependent induction

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] dependent induction


chronological Thread 
  • From: Ondrej Rypacek <oxr AT Cs.Nott.AC.UK>
  • To: coq-club AT inria.fr
  • Subject: [Coq-Club] dependent induction
  • Date: Tue, 06 Apr 2010 17:20:05 +0100

Dear all,
is it possible to prove the following in Coq?

Inductive X : nat -> Set := XZero : X 0.

Lemma Xinv: forall (x:X 0), x = XZero.


Inversion makes no progress; case analysis on x results in an ill-typed term:

Error: Abstracting over the terms "0" and "x" leads to a term
"fun (n : nat) (x : X n) => x = XZero" which is ill-typed.


Am I right to assume that this is a case for heterogeneous (J.M.) equality as I would like to conclude that (x : X n = XZero : X 0) ? But will I be able to obtain Xinv from that?

Many thanks in advance for any pointers !
Regards,
Ondrej




Archive powered by MhonArc 2.6.16.

Top of Page