coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Guillaume Melquiond <guillaume.melquiond AT inria.fr>
- To: frank maltman <frank.maltman AT googlemail.com>
- Cc: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Assistance with simple bounded number proof?
- Date: Fri, 13 May 2011 07:24:10 +0200
Le vendredi 13 mai 2011 à 02:51 +0000, frank maltman a écrit :
> IHf : fin_nat f < fin_bound f
> ============================
> S
> ((fix fin_nat (b0 : nat) (f0 : fin b0) {struct f0} : nat :=
> match f0 with
> | FZ _ => 0
> | FS b1 f' => S (fin_nat b1 f')
> end) b f) < S b
>
> I'm left scratching my head, unfortunately. I'm not sure what I need
> to be able to solve this.
If not for the leading S constructors in both sides, your goal would be
convertible to the induction hypothesis (since fin_bound f is b). So
just remove them with lemma lt_n_S and then apply the hypothesis.
Best regards,
Guillaume
- [Coq-Club] Assistance with simple bounded number proof?, frank maltman
- Re: [Coq-Club] Assistance with simple bounded number proof?, Guillaume Melquiond
- Re: [Coq-Club] Assistance with simple bounded number proof?, frank maltman
- Re: [Coq-Club] Assistance with simple bounded number proof?, Adam Chlipala
- Re: [Coq-Club] Assistance with simple bounded number proof?, Guillaume Melquiond
Archive powered by MhonArc 2.6.16.