coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: frank maltman <frank.maltman AT googlemail.com>
- To: Guillaume Melquiond <guillaume.melquiond AT inria.fr>
- Cc: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Assistance with simple bounded number proof?
- Date: Fri, 13 May 2011 06:35:24 +0000
- Domainkey-signature: a=rsa-sha1; c=nofws; d=googlemail.com; s=gamma; h=date:from:to:cc:subject:message-id:in-reply-to:references:x-mailer :mime-version:content-type:content-transfer-encoding; b=qCWDmouqnPjs7O8diTfjAknitsI1XPvT+OgxmDuJPLXsmqLkYolOkIUxkax+Z5Sa+6 LTCk8aYbnOm9bphxONEL8m8h7agJEolSR6XkP2eU0S61nicoYVU8MP2HG4DitFIoqr0y +XsleTAFWVQELWdMeTheNU7NTGm3dfP6sMaNI=
On Fri, 13 May 2011 07:24:10 +0200
Guillaume Melquiond
<guillaume.melquiond AT inria.fr>
wrote:
> Le vendredi 13 mai 2011 à 02:51 +0000, frank maltman a écrit :
>
> > IHf : fin_nat f < fin_bound f
> > ============================
> > S
> > ((fix fin_nat (b0 : nat) (f0 : fin b0) {struct f0} : nat :=
> > match f0 with
> > | FZ _ => 0
> > | FS b1 f' => S (fin_nat b1 f')
> > end) b f) < S b
> >
> > I'm left scratching my head, unfortunately. I'm not sure what I need
> > to be able to solve this.
>
> If not for the leading S constructors in both sides, your goal would be
> convertible to the induction hypothesis (since fin_bound f is b). So
> just remove them with lemma lt_n_S and then apply the hypothesis.
Thank you!
It seems blindingly obvious now that I look at it.
- [Coq-Club] Assistance with simple bounded number proof?, frank maltman
- Re: [Coq-Club] Assistance with simple bounded number proof?,
Guillaume Melquiond
- Re: [Coq-Club] Assistance with simple bounded number proof?, frank maltman
- Re: [Coq-Club] Assistance with simple bounded number proof?, Adam Chlipala
- Re: [Coq-Club] Assistance with simple bounded number proof?,
Guillaume Melquiond
Archive powered by MhonArc 2.6.16.