Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Proof without "auto with arith"

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Proof without "auto with arith"


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: lucian.patcas AT gmail.com
  • Cc: coq-club <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] Proof without "auto with arith"
  • Date: Wed, 22 Jun 2011 11:15:36 -0400

Lucian M. Patcas wrote:
Say f is

f (t : nat) := if t>1 and t<2000 then True else False

How can I prove this

forall t : nat, t >=2 -> t <= 1000 -> f t

Require Import Omega.

Definition f (t : nat) := IF t > 1 /\ t < 2000 then True else False.

Goal forall t : nat, t >=2 -> t <= 1000 -> f t.
  unfold f, IF_then_else; intuition omega.
Qed.



Archive powered by MhonArc 2.6.16.

Top of Page