coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: AUGER Cedric <Cedric.Auger AT lri.fr>
- To: AUGER Cedric <Cedric.Auger AT lri.fr>
- Cc: Andreas Abel <andreas.abel AT ifi.lmu.de>, Vladimir Voevodsky <vladimir AT ias.edu>, Coq-Club Club <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] inductive-coinductive ??
- Date: Mon, 27 Jun 2011 13:38:27 +0200
Le Mon, 27 Jun 2011 13:33:14 +0200,
AUGER Cedric
<Cedric.Auger AT lri.fr>
a écrit :
I was wrong with my second definition, it should have been:
Record item2 (current_restriction: A -> Prop): Type := {
current_function2: forall x, (A*(current_restriction x))+unit;
next_restriction2 :=
fun x => exists H, current_function2 x = inl unit (a, H)
}.
> Section Refinement2.
> Variable A: Type.
> Variable a: A.
>
> Record item2 (current_restriction: A -> Prop): Type := {
> current_function2: forall x, A+(~current_restriction x);
> next_restriction2 :=
> fun x => current_function2 x = inl (~current_restriction x) a
> }.
>
> CoInductive Refinement2: (A->Prop) -> Type :=
> Next2: forall current_restriction (f: item2 current_restriction),
> Refinement2 f.(next_restriction2 current_restriction) ->
> Refinement2 current_restriction.
> End Refinement2.
>
> The second variant may not be as convenient, but using it, you won't
> have to worry about the use of a proof_irrelevance axiom.
>
> That is in the environment:
>
> P: A -> Prop
> f_n: {x|P A} -> A
> x: A
> Hx1: P x
> Hx2: P x
> b: A
> Hb: f_n (ex_intro _ x Hx1) = b
> c: A
> Hc: f_n (ex_intro _ x Hx2) = c
> ===============================
> b = c
>
> is not axiom free provable.
>
> But in the second variant,
> P: A -> Prop
> f_n: forall x:A, A+(~P x)
> x: A
> Hx1: P x
> Hx2: P x
> b: A
> Hb: f_n x = left (~P x) b
> c: A
> Hc: f_n x = left (~P x) c
> ===============================
> b = c
>
> is axiom free provable
>
- [Coq-Club] inductive-coinductive ??, Vladimir Voevodsky
- Re: [Coq-Club] inductive-coinductive ??,
Andreas Abel
- Re: [Coq-Club] inductive-coinductive ??, Vladimir Voevodsky
- Re: [Coq-Club] inductive-coinductive ??,
AUGER Cedric
- Re: [Coq-Club] inductive-coinductive ??, AUGER Cedric
- <Possible follow-ups>
- Re: [Coq-Club] inductive-coinductive ??, Paolo Herms
- Re: [Coq-Club] inductive-coinductive ??,
Andreas Abel
Archive powered by MhonArc 2.6.16.