coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Andreas Abel <andreas.abel AT ifi.lmu.de>
- To: Vladimir Voevodsky <vladimir AT ias.edu>
- Cc: Coq-Club Club <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] inductive-coinductive ??
- Date: Mon, 27 Jun 2011 11:14:09 +0200
Hello Vladimir,
does this serve your purpose?
Variable A : Type.
Variable a : A.
CoInductive Stream (P : A -> Prop) : Type :=
cons : forall
(head : { x : A | P x } -> A)
(tail : Stream (fun x => forall (p : P x),
head (exist (fun x => P x) x p) = a)),
Stream P.
Definition VS := Stream (fun x => True).
Cheers,
Andreas
On 27.06.11 2:30 AM, Vladimir Voevodsky wrote:
Is there a way to define in Coq the type which can be informally
described as follows:
1. Given parameters A : Type , a : A .
2. I want to define the type of (infinite) sequences f_0 ,..., f_n,
.... where
2a. f_0 : A -> A .
2b. f_{S n} : {| x : A ; f_n x = a |} -> A .
Is there a way to define the type of such sequences ?
--
Andreas Abel <>< Du bist der geliebte Mensch.
Theoretical Computer Science, University of Munich
Oettingenstr. 67, D-80538 Munich, GERMANY
andreas.abel AT ifi.lmu.de
http://www2.tcs.ifi.lmu.de/~abel/
- [Coq-Club] inductive-coinductive ??, Vladimir Voevodsky
- Re: [Coq-Club] inductive-coinductive ??, Andreas Abel
- Re: [Coq-Club] inductive-coinductive ??, Vladimir Voevodsky
- Re: [Coq-Club] inductive-coinductive ??,
AUGER Cedric
- Re: [Coq-Club] inductive-coinductive ??, AUGER Cedric
- <Possible follow-ups>
- Re: [Coq-Club] inductive-coinductive ??, Paolo Herms
- Re: [Coq-Club] inductive-coinductive ??, Andreas Abel
Archive powered by MhonArc 2.6.16.