Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Comparing dependent records

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Comparing dependent records


chronological Thread 
  • From: Victor Porton <porton AT narod.ru>
  • To: Coq Club <coq-club AT inria.fr>
  • Subject: [Coq-Club] Comparing dependent records
  • Date: Sat, 19 Nov 2011 20:08:26 +0400
  • Envelope-from: porton AT yandex.ru

[[[[
Class C (set: Set) := {
  x : nat;
  v : (x=0)
}.

Parameter set : Set.

Parameter A B : C set.

Axiom ax: @x set A = @x set B.

(* Now I'll attempt to prove [A = B]. *)
(* But my proof doesn't work with a confusing error message:
Error: The term "v" has type "x = 0" while it is expected to have type
 "x = 0".
What is the error?
*)

Theorem ax2: @v set A = @v set B.
Proof.
  auto.
Qed.

Theorem thm: A = B.
proof.
  thus thesis by ax, ax2 using injection.
end proof. Qed.
]]]]

-- 
Victor Porton - http://portonvictor.org



Archive powered by MhonArc 2.6.16.

Top of Page