coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Guillaume Melquiond <(e29315a54f%hidden_head%e29315a54f)guillaume.melquiond(e29315a54f%hidden_at%e29315a54f)inria.fr(e29315a54f%hidden_end%e29315a54f)>
- To: (e29315a54f%hidden_head%e29315a54f)coq-club(e29315a54f%hidden_at%e29315a54f)inria.fr(e29315a54f%hidden_end%e29315a54f)
- Subject: Re: [Coq-Club] Setoid almost rewriting
- Date: Mon, 14 May 2012 17:14:27 +0200
Le lundi 14 mai 2012 à 11:25 +0200, Matthieu Sozeau a écrit :
> What you can do though is use the Proper instances to prove lemmas of the
> form
> [lt x y]. This is not rewriting though.
> Lemma proper_proof {A B} {R S} m (P : @Proper (A -> B) (S ==> R) m) x y (H
> : S x y) :
> R (m x) (m y).
> Proof. apply P. apply H. Qed.
>
> Ltac proper_proof :=
> repeat eapply proper_proof; try typeclasses eauto; auto.
Thanks a lot. This helps, but it only seems to work only on the
rightmost subterm of an expression. Rather than (R (m x) (m y)), one
would need (R (p x) (q y)) so that it works for any subterm. I guess it
involves point-wise relations, but I can't get it to work. Any
suggestion?
Best regards,
Guillaume
- [Coq-Club] Setoid almost rewriting, Guillaume Melquiond, 05/13/2012
- Re: [Coq-Club] Setoid almost rewriting, Matthieu Sozeau, 05/13/2012
- Re: [Coq-Club] Setoid almost rewriting, Guillaume Melquiond, 05/13/2012
- Re: [Coq-Club] Setoid almost rewriting, Arnaud Spiwack, 05/14/2012
- Re: [Coq-Club] Setoid almost rewriting, Matthieu Sozeau, 05/14/2012
- Re: [Coq-Club] Setoid almost rewriting, Matthieu Sozeau, 05/14/2012
- Re: [Coq-Club] Setoid almost rewriting, Guillaume Melquiond, 05/14/2012
- Re: [Coq-Club] Setoid almost rewriting, Matthieu Sozeau, 05/14/2012
- Re: [Coq-Club] Setoid almost rewriting, Guillaume Melquiond, 05/13/2012
- Re: [Coq-Club] Setoid almost rewriting, Matthieu Sozeau, 05/13/2012
Archive powered by MHonArc 2.6.18.