Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Re: Applying a definition

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Re: Applying a definition


Chronological Thread 
  • From: Adam Chlipala <adamc AT csail.mit.edu>
  • To: "N. Raghavendra" <raghu AT hri.res.in>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Re: Applying a definition
  • Date: Sun, 11 Aug 2013 11:19:27 -0400

On 08/10/2013 02:24 PM, N. Raghavendra wrote:
Thanks for that. I now have
----------------------------------------------------------------------
Theorem andb_eq_orb :
forall (b c : bool),
(andb b c = orb b c) ->
b = c.

Proof.
intros b c H.
destruct b.
simpl in H.
rewrite -> H.
reflexivity.

simpl in H.
rewrite -> H.
reflexivity.
Qed.
----------------------------------------------------------------------

A shorter proof script is
destruct b; auto.




Archive powered by MHonArc 2.6.18.

Top of Page