Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Equality in the assumptions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Equality in the assumptions


Chronological Thread 
  • From: Benoît Viguier <beviguier AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Equality in the assumptions
  • Date: Tue, 1 Mar 2016 08:09:48 +0900
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=beviguier AT gmail.com; spf=Pass smtp.mailfrom=beviguier AT gmail.com; spf=None smtp.helo=postmaster AT mail-pa0-f45.google.com
  • Ironport-phdr: 9a23:OpEHmhTPeukw0Yu3zKWCtdnqp9psv+yvbD5Q0YIujvd0So/mwa64ZxON2/xhgRfzUJnB7Loc0qyN4/+mBz1LucfJmUtBWaIPfidNsd8RkQ0kDZzNImzAB9muURYHGt9fXkRu5XCxPBsdMs//Y1rPvi/6tmZKSV3BPAZ4bt74BpTVx5zukbvipNuNMk4Q1XKUWvBbElaflU3prM4YgI9veO4a6yDihT92QdlQ3n5iPlmJnhzxtY+a9Z9n9DlM6bp6r5YTGfayQ6NtRrtBST8iLmod5cvxtBCFQxHcyGEbVzA8nxxPhRTy0hD1Q5b8qGOuvOdj2SaHPMDsZb8xUDWmqaxsTUm72288Kzcl/TSP2YRLh6VBrUf5qg==

Good Night (midnight here),

I think you have an error in your example. Because trivial/reflexivity/auto... does the job. :/

Theorem my_theorem:forall (a b c: my_type),  (my_ind a b) = (my_ind b c) -> 2 = 2.
Proof.
  intros a b c H.
  reflexivity.
Qed.

Could you please elaborate a bit more what you are looking for.

Kind regards.

Benoît

2016-03-01 7:09 GMT+09:00 Kiarash Rahmani <rahmank AT purdue.edu>:

Hey all,


I am stuck in the middle of a proof. 

In assumptions, I have an equality of two inductively defined propositions, and I need to make use of it. Here is a toy example to explain it:



Inductive my_type : Type :=

  | one : my_type

  | two : my_type 

  | other : nat -> my_type.



 Inductive my_ind (a b:my_type) : my_type -> Prop :=

  | cons_introl :forall x: my_type, b = one  ->  my_ind a b x

  | cons_intror :forall x: my_type, a = one  ->  my_ind a b x.



Theorem my_theorem:forall (a b c: my_type),  (my_ind a b) =  (my_ind b c) -> 2=2.

Proof.

  intros a b c H.

  (*How sould I make use of H?   inversion, injection, unfold, does not seem to work*)

  (*I need to destruct two possible ways of constructing my_ind, and then prove the goal in each case*)

Abort.




Thank you very much





Archive powered by MHonArc 2.6.18.

Top of Page