coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Vadim Zaliva <vzaliva AT cmu.edu>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Equality in the assumptions
- Date: Mon, 29 Feb 2016 16:19:04 -0800
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=vadim.zaliva AT west.cmu.edu; spf=None smtp.mailfrom=vadim.zaliva AT west.cmu.edu; spf=None smtp.helo=postmaster AT mail-wm0-f42.google.com
- Ironport-phdr: 9a23:dxkEeR+73gO23f9uRHKM819IXTAuvvDOBiVQ1KB90OscTK2v8tzYMVDF4r011RmSDdqdtaMP0bOempujcFJDyK7JiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wEZcKflZk+3amLRodQ56mNBXsq3G/pQQfBg/4fVIsYL+lRciM3o/tjqibwN76XUZhvHKFe7R8LRG7/036l/I9ps9cEJs30QbDuXBSeu5blitCLFOXmAvgtI/rpMYwu3cYh/V0/MlZFK7+Yq4QTLpCDT1gPXpmytfssEz9RAeO4zMuW2EXjBMAVxbX5RX7QJ7ZuS7n8OdxxX/JboXNUbkoVGH6vO9QQxjyhXJfOg==
Hey all,
I am stuck in the middle of a proof.
In assumptions, I have an equality of two inductively defined propositions, and I need to make use of it. Here is a toy example to explain it:
Inductive my_type : Type :=
| one : my_type
| two : my_type
| other : nat -> my_type.
Inductive my_ind (a b:my_type) : my_type -> Prop :=
| cons_introl :forall x: my_type, b = one -> my_ind a b x
| cons_intror :forall x: my_type, a = one -> my_ind a b x.
Theorem my_theorem:forall (a b c: my_type), (my_ind a b) = (my_ind b c) -> 2=2.
Proof.
intros a b c H.
(*How sould I make use of H? inversion, injection, unfold, does not seem to work*)
(*I need to destruct two possible ways of constructing my_ind, and then prove the goal in each case*)
Abort.
Thank you very much
- Re: [Coq-Club] Equality in the assumptions, Benoît Viguier, 03/01/2016
- <Possible follow-up(s)>
- Re: [Coq-Club] Equality in the assumptions, Vadim Zaliva, 03/01/2016
- Re: [Coq-Club] Equality in the assumptions, Emilio Jesús Gallego Arias, 03/01/2016
Archive powered by MHonArc 2.6.18.