Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Equality in the assumptions

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Equality in the assumptions


Chronological Thread 
  • From: Vadim Zaliva <vzaliva AT cmu.edu>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Equality in the assumptions
  • Date: Mon, 29 Feb 2016 16:19:04 -0800
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=vadim.zaliva AT west.cmu.edu; spf=None smtp.mailfrom=vadim.zaliva AT west.cmu.edu; spf=None smtp.helo=postmaster AT mail-wm0-f42.google.com
  • Ironport-phdr: 9a23:dxkEeR+73gO23f9uRHKM819IXTAuvvDOBiVQ1KB90OscTK2v8tzYMVDF4r011RmSDdqdtaMP0bOempujcFJDyK7JiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wEZcKflZk+3amLRodQ56mNBXsq3G/pQQfBg/4fVIsYL+lRciM3o/tjqibwN76XUZhvHKFe7R8LRG7/036l/I9ps9cEJs30QbDuXBSeu5blitCLFOXmAvgtI/rpMYwu3cYh/V0/MlZFK7+Yq4QTLpCDT1gPXpmytfssEz9RAeO4zMuW2EXjBMAVxbX5RX7QJ7ZuS7n8OdxxX/JboXNUbkoVGH6vO9QQxjyhXJfOg==

Current example is solved by 'reflexivity', but perhaps you are looking for 'destruct a,b'.



--
CMU ECE PhD candidate
Mobile: +1(510)220-1060
Skype: vzaliva


On Mon, Feb 29, 2016 at 2:09 PM, Kiarash Rahmani <rahmank AT purdue.edu> wrote:

Hey all,


I am stuck in the middle of a proof. 

In assumptions, I have an equality of two inductively defined propositions, and I need to make use of it. Here is a toy example to explain it:



Inductive my_type : Type :=

  | one : my_type

  | two : my_type 

  | other : nat -> my_type.



 Inductive my_ind (a b:my_type) : my_type -> Prop :=

  | cons_introl :forall x: my_type, b = one  ->  my_ind a b x

  | cons_intror :forall x: my_type, a = one  ->  my_ind a b x.



Theorem my_theorem:forall (a b c: my_type),  (my_ind a b) =  (my_ind b c) -> 2=2.

Proof.

  intros a b c H.

  (*How sould I make use of H?   inversion, injection, unfold, does not seem to work*)

  (*I need to destruct two possible ways of constructing my_ind, and then prove the goal in each case*)

Abort.




Thank you very much





Archive powered by MHonArc 2.6.18.

Top of Page