coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Soegtrop, Michael" <michael.soegtrop AT intel.com>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>
- Subject: RE: [Coq-Club] how to proof in Z modulo?
- Date: Tue, 9 Aug 2016 13:50:23 +0000
- Accept-language: de-DE, en-US
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=michael.soegtrop AT intel.com; spf=Pass smtp.mailfrom=michael.soegtrop AT intel.com; spf=None smtp.helo=postmaster AT mga02.intel.com
Dear Gilbert,
> Add Ring ModRing3 : ModRing3 (decidable Mod3Dec_correct).
thanks a lot for this hint, very useful!
I wouldn't have interpreted the description of "decidable" in the manual in
this way since something like (mulmod 3 4 x) cannot be simplified by
computation if x is unknown. I must admit, most of the other options are also
not that easy to understand for me either.
Best regards,
Michael
Intel Deutschland GmbH
Registered Address: Am Campeon 10-12, 85579 Neubiberg, Germany
Tel: +49 89 99 8853-0, www.intel.de
Managing Directors: Christin Eisenschmid, Christian Lamprechter
Chairperson of the Supervisory Board: Nicole Lau
Registered Office: Munich
Commercial Register: Amtsgericht Muenchen HRB 186928
- Re: [Coq-Club] how to proof in Z modulo?, (continued)
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Clément Pit--Claudel, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Clément Pit--Claudel, 08/09/2016
- RE: [Coq-Club] how to proof in Z modulo?, Soegtrop, Michael, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- RE: [Coq-Club] how to proof in Z modulo?, Soegtrop, Michael, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Gaetan Gilbert, 08/09/2016
- RE: [Coq-Club] how to proof in Z modulo?, Soegtrop, Michael, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- RE: [Coq-Club] how to proof in Z modulo?, Soegtrop, Michael, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Clément Pit--Claudel, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- RE: [Coq-Club] how to proof in Z modulo?, Soegtrop, Michael, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Clément Pit--Claudel, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
- Re: [Coq-Club] how to proof in Z modulo?, Laurent Thery, 08/09/2016
Archive powered by MHonArc 2.6.18.