coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Dominique Larchey-Wendling" <dominique.larchey-wendling AT loria.fr>
- To: <coq-club AT inria.fr>
- Subject: Re: [Coq-Club] is the axiom of choice... ?
- Date: Sun, 11 Sep 2016 17:40:14 +0200
Well it is not provable in Coq. But it is not false ...
Envoyé avec AquaMail pour Android
http://www.aqua-mail.com
Le 11 septembre 2016 11:35:57 Daniel de Rauglaudre <daniel.de_rauglaudre AT inria.fr> a écrit :
Ah indeed, axiom of unique choice... thanks. It is because somebody
told me the choice was computable in that case but I could not prove
it. Normal, if it is false :-)
On Sun, Sep 11, 2016 at 11:22:25AM +0200, Dominique Larchey-Wendling wrote:
I think it is called reification in Coq. And yes it is the axiom of
unique choice... The relation does not contain enough information to
compute the value. Unless P is decidable and the type is enumerable
of course.
Envoyé avec AquaMail pour Android
http://www.aqua-mail.com
Le 11 septembre 2016 11:09:23 Daniel de Rauglaudre
<daniel.de_rauglaudre AT inria.fr>
a écrit :
>Hi all,
>
>Is the axiom of choice required if all sets have one only element ?
>If not, how to prove it ?
>
>Russel said that if all sets contain a pair of socks, we need the axiom
>of choice to select a sock in each pair but that if they are shoes,
>we don't need it, because the choice function can be : "take the left
>shoe".
>
>But for sets of one only element ?
>
>Namely, I want to prove :
> (∀ x, ∃! y, P x y) → ∃ f, ∀ x, P x (f x)
>
>Is is possible, or do I need the fucking axiom of choice ?
>
>Thanks.
>
>--
>Daniel de Rauglaudre
>http://pauillac.inria.fr/~ddr/
--
Daniel de Rauglaudre
http://pauillac.inria.fr/~ddr/
- [Coq-Club] is the axiom of choice... ?, Daniel de Rauglaudre, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Dominique Larchey-Wendling, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Daniel de Rauglaudre, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Dominique Larchey-Wendling, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Daniel de Rauglaudre, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Thomas Payne, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Daniel de Rauglaudre, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Dominique Larchey-Wendling, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Daniel de Rauglaudre, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Ken Kubota, 09/11/2016
- [Coq-Club] Proof without the Axiom of Choice (was: Fwd: is the axiom of choice... ?), Ken Kubota, 09/12/2016
- Re: [Coq-Club] is the axiom of choice... ?, Abhishek Anand, 09/11/2016
- Re: [Coq-Club] is the axiom of choice... ?, Dominique Larchey-Wendling, 09/11/2016
Archive powered by MHonArc 2.6.18.