Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] is the axiom of choice... ?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] is the axiom of choice... ?


Chronological Thread 
  • From: "Dominique Larchey-Wendling" <dominique.larchey-wendling AT loria.fr>
  • To: <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] is the axiom of choice... ?
  • Date: Sun, 11 Sep 2016 17:40:14 +0200

Well it is not provable in Coq. But it is not false ...

Envoyé avec AquaMail pour Android
http://www.aqua-mail.com


Le 11 septembre 2016 11:35:57 Daniel de Rauglaudre <daniel.de_rauglaudre AT inria.fr> a écrit :

Ah indeed, axiom of unique choice... thanks. It is because somebody
told me the choice was computable in that case but I could not prove
it. Normal, if it is false :-)

On Sun, Sep 11, 2016 at 11:22:25AM +0200, Dominique Larchey-Wendling wrote:
I think it is called reification in Coq. And yes it is the axiom of
unique choice... The relation does not contain enough information to
compute the value. Unless P is decidable and the type is enumerable
of course.

Envoyé avec AquaMail pour Android
http://www.aqua-mail.com


Le 11 septembre 2016 11:09:23 Daniel de Rauglaudre
<daniel.de_rauglaudre AT inria.fr>
a écrit :

>Hi all,
>
>Is the axiom of choice required if all sets have one only element ?
>If not, how to prove it ?
>
>Russel said that if all sets contain a pair of socks, we need the axiom
>of choice to select a sock in each pair but that if they are shoes,
>we don't need it, because the choice function can be : "take the left
>shoe".
>
>But for sets of one only element ?
>
>Namely, I want to prove :
> (∀ x, ∃! y, P x y) → ∃ f, ∀ x, P x (f x)
>
>Is is possible, or do I need the fucking axiom of choice ?
>
>Thanks.
>
>--
>Daniel de Rauglaudre
>http://pauillac.inria.fr/~ddr/


--
Daniel de Rauglaudre
http://pauillac.inria.fr/~ddr/





Archive powered by MHonArc 2.6.18.

Top of Page