Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] are there specialists in linear algebra in the room?

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] are there specialists in linear algebra in the room?


Chronological Thread 
  • From: Laurent Thery <Laurent.Thery AT inria.fr>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] are there specialists in linear algebra in the room?
  • Date: Sun, 25 Sep 2016 22:28:26 +0200


Hi,

Using grobner basis it works:

Require Import Reals Nsatz.

Open Scope R_scope.

Section F.

Variables m11 m12 m13
m21 m22 m23
m31 m32 m33 : R.
Hypothesis Hd :
m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32 -
m31 * m22 * m13 - m32 * m23 * m11 - m33 * m21 * m12 = 1.

Variable H1 : m11 ^2 + m21 ^2 + m31^2 = 1%R.
Variable H2 : m12 ^2 + m22 ^2 + m32^2 = 1%R.
Variable H3 : m13 ^2 + m23 ^2 + m33^2 = 1%R.
Variable H4 : m11 * m12 + m21 * m22 + m31 * m32 = 0%R.
Variable H5 : m11 * m12 + m21 * m23 + m31 * m33 = 0%R.
Variable H6 : m12 * m13 + m22 * m23 + m32 * m33 = 0%R.

Let x := m32 - m23.
Let y := m13 - m31.
Let z := m21 - m12.


Lemma F1 : (m11 * x + m12 * y + m13 * z) = x.
Proof.
simpl in H1, H2, H3.
nsatz.
Qed.

Lemma F2 : (m21 * x + m22 * y + m23 * z) = y.
Proof.
simpl in H1, H2, H3.
nsatz.
Qed.

Lemma F3 : (m31 * x + m32 * y + m33 * z) = z.
Proof.
simpl in H1, H2, H3.
nsatz.
Qed.

--
Laurent



Archive powered by MHonArc 2.6.18.

Top of Page