Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] injectivity of inductive type implies False

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] injectivity of inductive type implies False


Chronological Thread 
  • From: Cristóbal Camarero Coterillo <nakacristo AT hotmail.com>
  • To: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] injectivity of inductive type implies False
  • Date: Tue, 28 Feb 2017 18:08:50 +0000
  • Accept-language: es-ES, en-US
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=nakacristo AT hotmail.com; spf=Pass smtp.mailfrom=nakacristo AT hotmail.com; spf=None smtp.helo=postmaster AT COL004-OMC1S10.hotmail.com
  • Ironport-phdr: 9a23:ZnRLDRbY/BjTF6Nvfg0rTRb/LSx+4OfEezUN459isYplN5qZr8y5bnLW6fgltlLVR4KTs6sC0LuL9fqwEjVZud6oizMrSNR0TRgLiMEbzUQLIfWuLgnFFsPsdDEwB89YVVVorDmROElRH9viNRWJ+iXhpTEdFQ/iOgVrO+/7BpDdj9it1+C15pbffxhEiCCzbL52LBi6txvdu8oZjYd/N6o91gbCr2dVdehR2W5mP0+YkQzm5se38p5j8iBQtOwk+sVdT6j0fLk2QKJBAjg+PG87+MPktR/YTQuS/XQcSXkZkgBJAwfe8h73WIr6vzbguep83CmaOtD2TawxVD+/4apnVAPkhSEaPDM/7WrZiNF/jLhDrRyhuRJx3pLUbo+WOvVicazQZskVSXZdUstLSyBNHp6wYo0SBOQBJ+ZYqIz9qkMQoBukBAmsH//v0jxTiXDs2a01y/osHhvD3AM6BdIBrm7UrNLtO6oMVuC10LfHzS/Cb/NS3Tf975XDfxcnof6WXrJ/a9beyVMuFwPeklWQrpfoPzOS1uQRtmiU9etgVea1h2E7rAFxpyGiy8ExgYfKnoIY0lHJ+CVjzIs1JdC0UkB2bNG+HJdOqy2WL4p7T8M4T2xouCs20LMLtJGhcCUJzpks2gTRZOadc4eS5xLuTOaRLil8hHJiYL+ymQ+8/068xuHgWcS4yU9EoC1bn9XRq34BygDf5tKHSvt64keh3CyA1wHX6u1ePU80kq/bJ4Ygwr42iJUTrVzOEy72lUnsjKKbdl8o9+an5uj9fLnquoeQN4puhQH/NqQulNa/AeM9MgUWWWiU4+e826f/8k3jQbVKleE2kq7CvZDaIsQbuqu5DBVU0oYn8RqwEzCm0NEAkXkdMF1FYA6Hj5TuO1zWPP/4Cu6/j02wnzdv2vDJJabsAo7NL3jGiLfuZ6xx609ayAopzNBQ/YhYCr8bIKG7Zkik/tffF1oyNxG+6+fhEtR0kI0EEyrbCaiAdajWrFWg5+Q1IuDKapVD6xjnLP1wzOTvlmOik1YZSoKg2JINZWq/Kd9hP0iDYH7ohZ9VF24JtwEkTff2j3WCViJWbne2Gak742doW8qdEY7fS9X10/S61yChE8gOaw==
  • Spamdiagnosticmetadata: NSPM
  • Spamdiagnosticoutput: 1:99

Thank you Guillaume and Gil.


It felt natural to ask for injection. It is interesting to see that in Agda they made the same mistake.


Can it be assumed for simple types? As for example nat<>Z or list nat <> list Z. Maybe even list A=list B -> A=B.


Or more interestingly, if we define the type array by
Inductive array (A:Type):nat->Type:=
|nil : array A 0
|cons : forall n:nat, A -> array A n -> array A (S n).

then can be assumed that array m A=array n B implies m=n and A=B? or at least array m A=array n A -> m=n?


Best regards,

--Cristóbal Camarero






Archive powered by MHonArc 2.6.18.

Top of Page