Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Vector in Coq [Was: Re: Trouble with dependent induction]

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Vector in Coq [Was: Re: Trouble with dependent induction]


Chronological Thread 
  • From: e AT x80.org (Emilio Jesús Gallego Arias)
  • To: Adam Chlipala <adamc AT csail.mit.edu>
  • Cc: coq-club AT inria.fr
  • Subject: [Coq-Club] Vector in Coq [Was: Re: Trouble with dependent induction]
  • Date: Sun, 17 Dec 2017 16:39:18 +0100
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=e AT x80.org; spf=Pass smtp.mailfrom=e AT x80.org; spf=Pass smtp.helo=postmaster AT x80.org
  • Ironport-phdr: 9a23:1zAFIBAYUu8TNnBYPpg6UyQJP3N1i/DPJgcQr6AfoPdwSPv/osbcNUDSrc9gkEXOFd2Cra4c0qyO6+jJYi8p2d65qncMcZhBBVcuqP49uEgeOvODElDxN/XwbiY3T4xoXV5h+GynYwAOQJ6tL1LdrWev4jEMBx7xKRR6JvjvGo7Vks+7y/2+94fcbglUmTaxe69+IAmrpgjNq8cahpdvJLwswRXTuHtIfOpWxWJsJV2Nmhv3+9m98p1+/SlOovwt78FPX7n0cKQ+VrxYES8pM3sp683xtBnMVhWA630BWWgLiBVIAgzF7BbnXpfttybxq+Rw1DWGMcDwULs5Qiqp4bt1RxD0iScHLz85/3/Risxsl6JQvRatqwViz4LIfI2ZMfxzdb7fc9wHX2pMRsZfWTJcDIO7YYsBAegOM+VWoIbyu1QAogCzBRW1BO711jNEmmX70K883u88EQ/GxgsgH9cWvXvKt9j0O6QfXfyvwKnP1zXDYO5d1TPy5ojNcxAhpfCMXbVtesTV10YvDBndjk6NooLkJTyV0uANvHaU7+pnSOmil3QnqwBrrTi0w8shjJTCiIENyl3c6Cl0w4U4KcemREJlYNOoCoZcuiOHO4dsX88vTX9ktD45x7AHo5K2fSoHxI4jyhLFdvCLb4qF7xT+X+iLOzh4nmhqeLenihay70egzur8W9G70VtJsiZJiN7MtmoC1xDL68iHTOVy/lu51DqS1A3e6ftILV4qmafaMZIt37w9mocJvUjeECL6hl36jKqMeUUl/uio5f7nYrLjppKEKYB5kQ7/P6cylsClBuQ4KAcOU3CB+eugzL3j4VH5QLJSg/IqlanZqYnWKtgfpq6kGABYyZ0j6ha6Dze+ytsUh3gHLFRfeBKGlYflIV/OIOqrRcu41n2gmTIj7PDCP6XoBpyFenHPmbLqVb1m4k9Yjg8y0ZZS648CWZ8bJ/emV2fh5ISeCQU2e0yZxufjCdI19I4Fy3nHLaadNK7dtheh/OMmOKjfN8cupD/hJq19tLbVhngjlApYJPHx0A==
  • Organization: X80 Heavy Industries

Hi all,

I don't mean to start any kind of controversial discussion but I can't
stop wondering about:

a) whether "Vector" and "Fin" are really usable libraries

b) if it is OK that Coq proposes it as the standard solution for sized
lists and bounded integers to newcomers

IMHO, having to learn ultra-advanced pattern matching patterns in order
to manipulate vectors and ordinals seems a bit of a too step learning
curve, specially for such pervasive structures.

An even so, learning all that may not be enough, for example, try to
prove the following lemma:

`∀ x, Vector.rev (Vector.rev x) = x`.

Unless I am missing something, it seems like a fun proof to.

I wonder, what do others think?

Best,
E.



Archive powered by MHonArc 2.6.18.

Top of Page