coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Gert Smolka <smolka AT ps.uni-saarland.de>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Simple formalization of type of natural deduction proofs
- Date: Mon, 19 Feb 2018 15:54:16 +0100
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=smolka AT ps.uni-saarland.de; spf=Pass smtp.mailfrom=smolka AT ps.uni-saarland.de; spf=None smtp.helo=postmaster AT triton.rz.uni-saarland.de
- Ironport-phdr: 9a23:xwCH+xCp1wjIONY/4R70UyQJP3N1i/DPJgcQr6AfoPdwSPT6psbcNUDSrc9gkEXOFd2Cra4c0KyO6+jJYi8p2d65qncMcZhBBVcuqP49uEgeOvODElDxN/XwbiY3T4xoXV5h+GynYwAOQJ6tL1LdrWev4jEMBx7xKRR6JvjvGo7Vks+7y/2+94fcbglUijexe69+IAmrpgjNq8cahpdvJLwswRXTuHtIfOpWxWJsJV2Nmhv3+9m98p1+/SlOovwt78FPX7n0cKQ+VrxYES8pM3sp683xtBnMVhWA630BWWgLiBVIAgzF7BbnXpfttybxq+Rw1DWGMcDwULs5Xymp4aV2Rx/ykCoJNyI2/27KhMJ+gqJVvhCuqR94zYPPeo6ZKP9+c7ndfd8GR2dMWNtaWSxbAoO7aosCF+sPMvhCr4nhulAAsB6+BQ6oBOPs0DBDm3j73bY/0+QmFQHG3xYvEskWsHTPttn1KaESUeGswKnT1zrMdelW2TPn54jObx8tu+yDUqxpfMfX1EIhGQTFjlCKpozkOTOYzvkNs26a7+Z5TuKgkXQoqxt1oje1wMcjl5PFiZ8LxVzc6SV4zpg6Jdm2SEJhZt6kCpRQuieHPIV1WsMvW3xktSg1x7EcvZO2fTIGxZY9yxLBa/GLa5WE7xzsWeqLJTp1hWhpdK+8ihuz60Ss1/HwWtWy3V1XtCRKiMPMuWoI1xHL6siIVP99/kC51DaTzQDT6/1EIUcylabBMZ4gw6Q8locVsUTCByP2g1/5g7WMdkUg4Oeo7fnobq/7qZCCL4N0iwf+PboymsGnHOg1PAcDU3Kf9Om9zrHu/1f1TKtKg/Eul6nWqpHaJcAVpq6jBA9V154u6w26Dzeh1NQYnmMIIUldeBKclYTpJlfOIPHhAfekmVujii1rx/TcMb3nH5rBNGXMn6n5cbZn90Fc0BYzzcxY559MFr4BJ+vzVlbtu9zcEx82KBe5w/3nCdV4zoMRQ3iDAq6fMKPIsF+H/PgjI+eWZNxdhDGoIP88ovXqkHURmFkHfKDv04FERmq/G6FJLl+FKUHphdMCGC9epQ85SO/joEWZFyNVZjOpVqsm4jg9BMSqANGQFciWnLWd0XLjTdVtbWdcBwXUSCa6R8C/Q/4JLRmqDIpkmz0AW6KmTtV5hwm18hL8yv98J+PO/iQeudTv2YosvrGBpVQJ7TVxSv+l/SSVVWguxjEQXHkr2qE6ukV00FOK16Q+j/EKTYUOtcMMaR8zMNvn98I/C932XVieLMuTSUqhRJO8E3csSNN02NYHeUJ0Hdnkgh2Rhyc=
We cover intuitionistic / classical ND in an introductory class using Coq,
see lecture notes and Coq files at https://courses.ps.uni-saarland.de/icl_17/2/Resources.
This includes Glivenko’s theorem.
There is also a Coq development of Gentzen’s intuitionistic sequent calculus
showing that it is decidable and intereducible with intuitionistic ND, see
Gert
On 19. Feb 2018, at 15:16, Kevin Sullivan <sullivan.kevinj AT gmail.com> wrote: I'm looking for a simplest way to teach my early undergraduate students about natural deduction and/or sequent calculus proof objects without having to get into lambda terms and type systems.The following "POPL tutorial" suggests a standard solution: formalize proofs as values of an inductive type, where the constructors mirror the rules of inference.The rule for implication introduction says (naturally enough) that if you have a function from proofs of A to proofs of B, you can construct a proof of (Impl A B).A straightforward translation of this into Coq, as copied right below this sentence, results in a non-positivity error for the encoding of this inference rule./* variables */Inductive var := mk_var: nat -> var./* propositions in my minimal propositional logic */Inductive prop :=| atom: var -> prop| and: prop -> prop -> prop| impl: prop -> prop -> prop./* proof rules */Inductive proof: prop -> Type :=| axiom: forall A: prop, proof A| andIntro: forall A B: prop, proof A -> proof B -> proof (and A B)| andElimL: forall A B: prop, proof (and A B) -> proof A| andElimR: forall A B: prop, proof (and A B) -> proof B| implElim: forall A B: prop, proof A -> proof (impl A B) -> proof B| implIntro: forall A B: prop, (proof A -> proof B) -> proof (impl A B). (* oops!!! *)What would be the canonical way to represent the same ideas in Coq in a way that works?Again, the aim is a super-straightforward pedagogical explication of rules of natural deduction (or sequent calculus), for a propositional logic only, with the ability to "play around" by building proof terms by explicit application of introduction and elimination inference rules.Kevin
- [Coq-Club] Simple formalization of type of natural deduction proofs, Kevin Sullivan, 02/19/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Kevin Sullivan, 02/19/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Gert Smolka, 02/19/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Kevin Sullivan, 02/19/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Daniel Schepler, 02/19/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Pierre Courtieu, 02/27/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Julien Narboux, 02/28/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, manoury, 02/28/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Julien Narboux, 02/28/2018
- Re: [Coq-Club] Simple formalization of type of natural deduction proofs, Pierre Courtieu, 02/27/2018
Archive powered by MHonArc 2.6.18.