coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Kenneth Roe <kendroe AT hotmail.com>
- To: "coq-club AT inria.fr" <coq-club AT inria.fr>, "gaetan.gilbert AT skyskimmer.net" <gaetan.gilbert AT skyskimmer.net>
- Subject: Re: [Coq-Club] A couple of simple proofs.
- Date: Tue, 28 Aug 2018 17:14:23 +0000
- Accept-language: en-US
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=kendroe AT hotmail.com; spf=Pass smtp.mailfrom=kendroe AT hotmail.com; spf=Pass smtp.helo=postmaster AT NAM01-BN3-obe.outbound.protection.outlook.com
- Ironport-phdr: 9a23:QL+1Mhx77ln5o1XXCy+O+j09IxM/srCxBDY+r6Qd2uoQIJqq85mqBkHD//Il1AaPAd2Eraocw8Pt8InYEVQa5piAtH1QOLdtbDQizfssogo7HcSeAlf6JvO5JwYzHcBFSUM3tyrjaRsdF8nxfUDdrWOv5jAOBBr/KRB1JuPoEYLOksi7ze+/94HRbglSmDaxfa55IQmrownWqsQYm5ZpJLwryhvOrHtIeuBWyn1tKFmOgRvy5dq+8YB6/ShItP0v68BPUaPhf6QlVrNYFygpM3o05MLwqxbOSxaE62YGXWUXlhpIBBXF7A3/U5zsvCb2qvZx1S+HNsDwULs6Wymt771zRRHolikJKiI5/m/UhMx+jq1UvB2uqgdlzILIfI2YLuZycr/Acd4cWGFPXtxRVytEAo6kaoUAEewBPeBGoInhp1sFsAewBQ6yC+jyzTJIhWH53asn3OQ7FgHJwhctH9IJsHTIqdX6LqYSUeSvwKbUyjXDaupb1DHg44bGdRAhpOuDXbN2ccfJ1UYvExnKjk6LqYzkIzyazOANs2aB4OV8SeKvkHQrqwBqojWp28wiiZHJi5oax1zY7yl0xJg5KcekREJhYtOpEYNcty+EOIZ1Xs8vRmRltSgmxbADupO0YTYGx4oiyhPRZPGKcJaH7xfsWemPPDh1hHRoc6+liRmo60iv0Oj8W9G00FlUqipFlcHBuGgR2hLU9sSLV+Jx81q51zuBzgzT7fpLLl4umarcNp4h3qU/lp0OsUTFAyD6gl32jLWRdkU45Oen9/jnYrThpp+aLYN0jRz+Mrgqmsy4BuQ4MRICUHSc+eS5zLHj/Ev5T6tWjvAunaTVrIrWKMAFqqKjHwNZyIUu5henAzejytsYnH0HLFxfeBKAiojkI1LOL+7+DfiimVSslylkyuvGPr3mHpXNK2LMkLblfbpn90Fczw8zwchF551IErEBPO7zWkjpudPECR85KhW4zPrjCNVgzYwTQnmPA6+cMKPKq1CE/OMvI++WZI8UojnxMfYl5+S9xUM+zBUWerDs1p8KYli5GO5nKgOXezCk1twGCCIBuhc0ZO3sklyLFzBJMTL6Fa016y0yDsSpDIPJS5qxqKeCzTy4H5hTa3oADF2QWz+8eIyJR/4KLi2TJsVsiCAsTruwUIwg0BSjrkn8xqYxfcTO/ShNlp/l0tVp56Xpkhx6oT95CciH1GylT2Zom2oJQ3k926Up8h818UuKzaUt268QLtdU/f4cCl5rZ66Z9PRzDpXJYiyEe96ITFi8RdD/WmMxSc40yt4KJU16Hof710yR72+RG7YQ0oezKtks6KuFhCrxINp4wnfCkqImigt+G5YdBSidnqd6sjPrKcvJnkGey/n4U405hHeI3kHYiG2EsQdfTRJ6VrjDUTYHfEzKoN/l50TECbizFbAgNQgHwsmHePJH
For the first proof, there seemed to be a number of equivalences in Coq.Logic.ClassicalFacts. Is there a standard axiom to add for classical logic?
- Ken
From: coq-club-request AT inria.fr <coq-club-request AT inria.fr> on behalf of Gaëtan Gilbert <gaetan.gilbert AT skyskimmer.net>
Sent: Tuesday, August 28, 2018 9:06:57 AM
To: coq-club AT inria.fr
Subject: Re: [Coq-Club] A couple of simple proofs.
Sent: Tuesday, August 28, 2018 9:06:57 AM
To: coq-club AT inria.fr
Subject: Re: [Coq-Club] A couple of simple proofs.
The first one can't be proven, either add it as an axiom or live without it.
For the second one:
Theorem xverif: (forall q, q+1=3->q+1=4)<->False.
Proof.
split.
(* get rid of the False -> ... goal *)
2:intros [].
intros H.
specialize H with 2. (* or pose proof (H 2) as H' then work with H' *)
discriminate H.
reflexivity.
Qed.
for instance
I don't know why you're trying with (q:=0), that won't give anything
interesting.
Gaëtan Gilbert
On 28/08/2018 18:00, Kenneth Roe wrote:
> How can I complete the following two proofs:
>
>
> Theorem bicond:
>
> forall (x y :Prop), (x <-> y) -> x=y.
>
> Proof.
>
> ...
>
> Qed.
>
>
> And the second proof:
>
>
> Theorem xverif: (forall q, q+1=3->q+1=4)=False.
>
> Proof.
>
> eapply bicond.
>
> split. intros.
>
>
> elim H with (q := 0).
>
> generalize H.
>
> intros.
>
> ...
>
> Qed.
>
>
> What gets filled in for the "..." in each of the above proofs?
>
>
> - Ken
>
For the second one:
Theorem xverif: (forall q, q+1=3->q+1=4)<->False.
Proof.
split.
(* get rid of the False -> ... goal *)
2:intros [].
intros H.
specialize H with 2. (* or pose proof (H 2) as H' then work with H' *)
discriminate H.
reflexivity.
Qed.
for instance
I don't know why you're trying with (q:=0), that won't give anything
interesting.
Gaëtan Gilbert
On 28/08/2018 18:00, Kenneth Roe wrote:
> How can I complete the following two proofs:
>
>
> Theorem bicond:
>
> forall (x y :Prop), (x <-> y) -> x=y.
>
> Proof.
>
> ...
>
> Qed.
>
>
> And the second proof:
>
>
> Theorem xverif: (forall q, q+1=3->q+1=4)=False.
>
> Proof.
>
> eapply bicond.
>
> split. intros.
>
>
> elim H with (q := 0).
>
> generalize H.
>
> intros.
>
> ...
>
> Qed.
>
>
> What gets filled in for the "..." in each of the above proofs?
>
>
> - Ken
>
- [Coq-Club] A couple of simple proofs., Kenneth Roe, 08/28/2018
- Re: [Coq-Club] A couple of simple proofs., Gaëtan Gilbert, 08/28/2018
- Re: [Coq-Club] A couple of simple proofs., Kenneth Roe, 08/28/2018
- Re: [Coq-Club] A couple of simple proofs., Kazuhiko Sakaguchi, 08/30/2018
- Re: [Coq-Club] A couple of simple proofs., Kenneth Roe, 08/28/2018
- Re: [Coq-Club] A couple of simple proofs., Gaëtan Gilbert, 08/28/2018
Archive powered by MHonArc 2.6.18.