Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] A couple of simple proofs.

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] A couple of simple proofs.


Chronological Thread 
  • From: Kazuhiko Sakaguchi <pi8027 AT gmail.com>
  • To: kendroe AT hotmail.com, gaetan.gilbert AT skyskimmer.net, coq-club AT inria.fr
  • Subject: Re: [Coq-Club] A couple of simple proofs.
  • Date: Fri, 31 Aug 2018 05:51:22 +0900
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=pi8027 AT gmail.com; spf=Pass smtp.mailfrom=pi8027 AT gmail.com; spf=None smtp.helo=postmaster AT mail-yw1-f53.google.com
  • Ironport-phdr: 9a23:Q9PzDRAOpWsXnBMn4bCtUyQJP3N1i/DPJgcQr6AfoPdwSPT6osbcNUDSrc9gkEXOFd2Cra4c1KyO6+jJYi8p2d65qncMcZhBBVcuqP49uEgeOvODElDxN/XwbiY3T4xoXV5h+GynYwAOQJ6tL1LdrWev4jEMBx7xKRR6JvjvGo7Vks+7y/2+94fcbglUhjexe69+IAmrpgjNq8cahpdvJLwswRXTuHtIfOpWxWJsJV2Nmhv3+9m98p1+/SlOovwt78FPX7n0cKQ+VrxYES8pM3sp683xtBnMVhWA630BWWgLiBVIAgzF7BbnXpfttybxq+Rw1DWGMcDwULs5Xymp4aV2Rx/ykCoIODA5/2PXhMJ+j6xVvQyvqABwzYPPfIGVLeBzcr/Bcd8GR2dMWNtaWSxbAoO7aosCF+8PMvxZrongp1sOrBi+BQ6xD+3y0DBIhWX53aIn0+s9EQHG3RErEtUWsHTVr9j5KLkeXOKuwanHyDXMdfJW2TPn5IfUdRAhpOiBULRtesTfzkkvEhnKjlSWqYH9IzyV0v4Cs3OA7+phSe2gkWonqw9rrTez2scskZPFhoMOylzc9CV5xpw1JdyiR0Jhb96kCp1dvDyZOYtuWs4uXX1ktSIgxrAFuZO3ZjUGxZU6yxLFa/GKfY6F6Q/5WumLOzd3nndldaq/hxms9UigzfXxVsyu31ZLqipJi9nNt34Q2xDK5MiKSvVw8l2u2TaI0ADT5eVELl4umaXHLJ4hx6Y8lpsVsUvdAi/7gFv6gLOSe0k++eWl6/7rbqjnq5OBLYN5ig/zPrwrmsOlAOQ4NgYOX3Kc+eS5zLDj5Uz5TbZWgvEokKTUq5/aJcEBqa64Bw9ZyJos6xG6Dzu+ytQXgWEHLE5ZeBKAl4XmJ1bOIOnhAfijh1SsjSxkyuvdPrzhB5XNNmLMnK3gfbZ78U5cyRA8wcpR55JOWfk9J6fwV0n9rtvVJh8+Lwm9wuKhA9J4kssRUG+TC6nfP6LWu1KS+so0IPiXZ44QvTvnbf4o+7qmhngg3FQZYKOB3J0NaXn+EO41DV+eZC/Pi8UcEWYJuUIFRe/jh0CJUT8bM26zD/pmuRk0DYunCcHIQYX70+/J5zuyApADPjMOMVuLC3q9L9zVCcdJUzqbJ4paqhJBULGgT4E70hT37V31zrNmKqzf/ShK7Mu/hugw3PXakFQJzRIxF96UijjfQGR9n2dOTDgzjvgm/B5Nj2yb2K09uMR2UNxe4/QTD1U/PJ/Yiv1lUpX8B1mHcdCOR1KrBN6hBGNpQw==

The first one is propositional extensionality:
https://coq.inria.fr/library/Coq.Logic.PropExtensionality.html

Kazuhiko
2018年8月29日(水) 2:15 Kenneth Roe
<kendroe AT hotmail.com>:
>
> For the first proof, there seemed to be a number of equivalences in
> Coq.Logic.ClassicalFacts. Is there a standard axiom to add for classical
> logic?
>
>
> - Ken
>
> ________________________________
> From:
> coq-club-request AT inria.fr
>
> <coq-club-request AT inria.fr>
> on behalf of Gaëtan Gilbert
> <gaetan.gilbert AT skyskimmer.net>
> Sent: Tuesday, August 28, 2018 9:06:57 AM
> To:
> coq-club AT inria.fr
> Subject: Re: [Coq-Club] A couple of simple proofs.
>
> The first one can't be proven, either add it as an axiom or live without it.
>
> For the second one:
>
> Theorem xverif: (forall q, q+1=3->q+1=4)<->False.
> Proof.
> split.
> (* get rid of the False -> ... goal *)
> 2:intros [].
>
> intros H.
> specialize H with 2. (* or pose proof (H 2) as H' then work with H' *)
> discriminate H.
> reflexivity.
> Qed.
>
> for instance
>
> I don't know why you're trying with (q:=0), that won't give anything
> interesting.
>
> Gaëtan Gilbert
>
> On 28/08/2018 18:00, Kenneth Roe wrote:
> > How can I complete the following two proofs:
> >
> >
> > Theorem bicond:
> >
> > forall (x y :Prop), (x <-> y) -> x=y.
> >
> > Proof.
> >
> > ...
> >
> > Qed.
> >
> >
> > And the second proof:
> >
> >
> > Theorem xverif: (forall q, q+1=3->q+1=4)=False.
> >
> > Proof.
> >
> > eapply bicond.
> >
> > split. intros.
> >
> >
> > elim H with (q := 0).
> >
> > generalize H.
> >
> > intros.
> >
> > ...
> >
> > Qed.
> >
> >
> > What gets filled in for the "..." in each of the above proofs?
> >
> >
> > - Ken
> >



Archive powered by MHonArc 2.6.18.

Top of Page