Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Variable closure

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Variable closure


Chronological Thread 
  • From: Tadeusz Litak <tadeusz.litak AT gmail.com>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Variable closure
  • Date: Sun, 12 May 2019 19:00:55 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=tadeusz.litak AT gmail.com; spf=Pass smtp.mailfrom=tadeusz.litak AT gmail.com; spf=None smtp.helo=postmaster AT mail-wm1-f46.google.com
  • Ironport-phdr: 9a23:7wnGLxc+NdH//6uFqP7jdXQWlGMj4u6mDksu8pMizoh2WeGdxcS9bR7h7PlgxGXEQZ/co6odzbaP6uaxAydZucfJmUtBWaQEbwUCh8QSkl5oK+++Imq/EsTXaTcnFt9JTl5v8iLzG0FUHMHjew+a+SXqvnYdFRrlKAV6OPn+FJLMgMSrzeCy/IDYbxlViDanbr5+MQi6oR/Vu8UIjoduN7o9xx/UqXZUZupawn9lK0iOlBjm/Mew+5Bj8yVUu/0/8sNLTLv3caclQ7FGFToqK2866tHluhnFVguP+2ATUn4KnRpSAgjK9w/1U5HsuSbnrOV92S2aPcrrTbAoXDmp8qlmRAP0hCoBKjU09nzchM5tg6JBuB+hvQFxzZDaYI+VN/RwcK3SctwYSmVdRcteTTBND5mmYocTAecMP+BVpJT9qVsUqhu+ABGhCv31xTBVmHD2wLY60uU8Gg/A3QwgA8gBsHfJp9jyKKcdS/26w7fVzTXYbvJawzP96InUch87ovGBRr1wcc/LxkkuEwPJlEmfqYvgPz6M0OkGrmaV7+1lVe21im4nrRl8oiWpxsctlInFn5kVylXf+iljzoY1P9u1Q1N4b968CJZcqT2WOo9sTs4hQ2xkojs2xqMFtJKhcyUHyYwrywDDZ/CbboSF5w/vWeeKLjp7gX9pZq+wiAyp/kWlyeDzS9W43EpPoyZbktTDrW0C2hnN5seZV/dw8EKs1DaN2g/J5OxJJEE5mbfAJJE6xLM7i4Advl7ZHiDsnUX7lK+WeVsg+uiv8+nnZ6/ppp6YN4NthAD+N7kiltWxAek3MwUCRWeb+eO71L3s+U32Xq9GgeExkqncqJzaJMIbqbClAwJNzIov9xKyAy2l3dkYh3ULMUxJdRGdg4XmOlzCOPX4Au2+g1Sonjdr3ffGPrj5D5XRNHfMjanufatm609d0gYzydFf545OBbECO//zVUrxu8bZDh89KQC73+HnCNBl2oMERW2PGrOZML/VsVKQ+u0vJPCMaJYJtzb5Nvgq/OXjjWQ5mF8YZammx4EbaHG+HvR8IkWWe2DggtkbETRCgg1rR+vzzVaGTDR7ZnCoXqt66CtoMo++CZb/QdWxibCMwTypWJlXemlFIl+JGHbsMY6DXqQiciWXd/NonjEZTqrpb4493BLm4BPzx7d6NfiS/iwEvJHL29185umVnhY3o28nR/+B2n2AGjkn1lgDQCU7ifgm/B5Nj2yb2K09uMR2UNxe4/QTD1U/PJ/YivN/UpX8BlyHcdCOR1KrBN6hBGNpF45j85o1e094Xu6aoFXbxSPzWu0akrWKANo/9aeOhyGgdfY48G7P0ewat3djR8JOMWO8gasmrlrcAofIlwOSkKP4LKk=

Quite obviously there are sufficient conditions, for example it'd be enough that F is s.t. (exists y, F) <-> (forall y, F) is provable.

But let us note that in your test'  absolutely anything can be the consequent, including False:

Lemma test' : forall n, (forall m, m=0 /\ m=n) -> False.
Proof.
  intros n H. destruct n.
  - specialize (H 1). destruct H. discriminate.
  - specialize (H 0). destruct H. discriminate.
Qed.



On 12.05.19 18:40, richard Dapoigny wrote:

it seems it not true in general but in some cases, it is true :

Lemma test : forall n m, m=0 /\ m=n -> n=0.
Proof.
intros  n m H;destruct H;rewrite <-H0;assumption.
Qed.

Lemma test' : forall n, (forall m, m=0 /\ m=n) -> n=0.
Proof.
intros n H;specialize (H n);destruct H;assumption.
Qed.

so, is there a way to contain the case in which it true (i.e., a condition)?

Le 12/05/2019 à 17:22, Jeremy Dawson a écrit :
Would you expect it to hold?  Rather, isn't the appropriate equivalence 
in classical logic the following?

(forall x, ((exists y, F) -> G)) <-> forall x y, (F -> G)

Jeremy

On 05/13/2019 01:17 AM, richard Dapoigny wrote:
Dear all,

using classical logic in Coq, is there a way to prove that the following 
equivalence holds?

forall x, ((forall y, F) -> G) <-> forall x y, (F -> G)

in which F depends on x an y while G only depends on x

Thanks for your answer,

Rich

-- 
*Richard Dapoigny*
Associate Professor - LISTIC Laboratory
University Savoie Mont-Blanc
5, chemin Bellevue
Po. Box 80439
Annecy-le-Vieux 74940
FRANCE
https://www.listic.univ-smb.fr/en/presentation-en/members/lecturers/richard-dapoigny-en/
--
Richard Dapoigny
Associate Professor - LISTIC Laboratory
University Savoie Mont-Blanc
5, chemin Bellevue
Po. Box 80439
Annecy-le-Vieux 74940
FRANCE
https://www.listic.univ-smb.fr/en/presentation-en/members/lecturers/richard-dapoigny-en/





Archive powered by MHonArc 2.6.18.

Top of Page