coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Donald Sebastian Leung <donaldsebleung AT gmail.com>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] Showing proof of type ~(P -> Q)?
- Date: Sat, 19 Sep 2020 10:31:38 +0800
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=donaldsebleung AT gmail.com; spf=Pass smtp.mailfrom=donaldsebleung AT gmail.com; spf=None smtp.helo=postmaster AT mail-il1-f171.google.com
- Ironport-phdr: 9a23:TkdN2BQQJ0IHOgX47vqeAZhRxdpsv+yvbD5Q0YIujvd0So/mwa6ybBaN2/xhgRfzUJnB7Loc0qyK6v+mATNLvMbJ8ChbNsAVCVld0YRetjdjKfbNMVf8Iv/uYn5yN+V5f3ghwUuGN1NIEt31fVzYry76xzcTHhLiKVg9fbytScbdgMutyu+95YDYbRlWizqhe7NyKwi9oRnMusUMjoZuN6Q8xgHVrnZKdOhbxWBlLk+Xkxrg+8u85pFu/zlRtv4768JMTaD2dLkkQLJFCzgrL3o779DxuxnZSguP6HocUmEInRdNHgPI8hL0UIrvvyXjruZy1zWUMsPwTbAvRDSt9LxrRwPyiCcGLDE27mfagdFtga1BoRKhoxt/w5PIYIyQKfFzcL/Rcc8cSGFcWMtaSi5PDZ6mb4YXAOUBM+RXoYnzqVUNsBWwGxWjCfj1xTNUnHL7x7E23/gjHAzAwQcuH8gOsHPRrNjtOqkSVua1w7PMzTrecvhYxCny55PSfRA6vfGMXKh/cczMwkcpCQzFk1OQqYP4ND6Sy+sNtG6b4PBkVe2ykG4otRp+ojyxyccxjInJiZkYyl/B9SpjwYY1Ice0R1J8Yd6hCZZdsTyROIRqTM04WW5opDo6xaMcuZ69ZCUHyooqywDCZvCafIaG7BDuWumfLzl4gH9oZbGyihSs/UW81uDyWdS53VVEoydbj9TBqnQA2wLO58WHSvZx40ms1DCS3A7Q8uFJOV44mbbfJpI7wbM9loAfvVnCEyL3gkn6ka2belgi9+O18eroeK/mqYWZN4JsigHxLKAumsunDOQ9KAcOXmyb9f291L3n4EH1WbtKguA0n6XEqpzaKsMbpqm2Aw9RzIkv8QqwDzCj0NgAnHkHKkxKeA6fgoT3J13DJOr0APS/jli2jTtmxvHLMqf8DpjPM3TPiLLhcqx8605Yxgoz19df55dMB74cJ/LzXFX+tNjFAR8iLQO72OLnB8tg1oMYVmKCGaCZMKbIvl+J4uIjOfWDZIgQuDrlMfgq++bujWMlmV8aZaSmwZwXaGmhEvt6J0WZfGHjj8waEWYKuwo+VPblhEeDUT5VfXayXrgz6is1CIK8Xs//QdWmh6XE1yOmFLVXYHpHAxaCCyTGbYKBDtsLbiuWLodanzYNTqSgQolp8RyzsgCyn7ZgKOPQ9jYVv5buyd56z+LWnBA2szdzCpLOgCm2U2hokzZQFHcN16dlrBklkwvR4e1Dm/VdUOdrybZRSA5jbMzTyuV7D5b5XQeTJo7YGmbjec2vBHQKdvx0xtYPZ0hnHND710LM2iOrB/kekLnZXcVpoJKZ5GD4IoNG81iD1KQliAN4EM5GNGnjh6omsgaKWNePnEKemKKnM68b2XyV+Q==
I think you might be confusing the following two propositions:
- It is not the case that P -> Q for any a, b (ex : ~ (forall (a b : A), P -> Q))
- For any given pair of values a, b, P -> Q is decidedly false (ex : forall (a b : A), ~(P -> Q))
The informal proof you gave would work for the former example while you are asking for a proof of the latter example.
~ Donald
Kumar, Ashish <azk640 AT psu.edu> 於 2020年9月19日 週六 上午9:44寫道:
Suppose I have a theorem of the form:
Theorem ex: forall (a b: A), ~(P -> Q).
(where A has type 'Type' defined earlier, and a and b are used in the propositions P and Q.)
How do I go about proving this?
I realize that an informal proof for this would involve me showing there exists some value a and b, where P holds but Q does not hold i.e. informally, I would be proving the lemma ex2: exists (a b: A), P /\ ~Q. How can I prove ex2 from ex1 in Coq??
With regards,
Ashsih
- [Coq-Club] Showing proof of type ~(P -> Q)?, Kumar, Ashish, 09/19/2020
- Re: [Coq-Club] Showing proof of type ~(P -> Q)?, Donald Sebastian Leung, 09/19/2020
- Re: [Coq-Club] Showing proof of type ~(P -> Q)?, Kumar, Ashish, 09/19/2020
- Re: [Coq-Club] Showing proof of type ~(P -> Q)?, River Dillon, 09/19/2020
- Re: [Coq-Club] Showing proof of type ~(P -> Q)?, Daniel Kuhse, 09/19/2020
- Re: [Coq-Club] Showing proof of type ~(P -> Q)?, Kumar, Ashish, 09/19/2020
- Re: [Coq-Club] Showing proof of type ~(P -> Q)?, Donald Sebastian Leung, 09/19/2020
Archive powered by MHonArc 2.6.19+.