Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] cases in leq proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] cases in leq proof


Chronological Thread 
  • From: Robbert Krebbers <mailinglists AT robbertkrebbers.nl>
  • To: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] cases in leq proof
  • Date: Tue, 22 Dec 2020 21:24:08 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=mailinglists AT robbertkrebbers.nl; spf=Pass smtp.mailfrom=mailinglists AT robbertkrebbers.nl; spf=None smtp.helo=postmaster AT se22-yh-out3.route25.eu
  • Ironport-phdr: 9a23:nUHs9RzwcKhVbqfXCy+O+j09IxM/srCxBDY+r6Qd0uoULvad9pjvdHbS+e9qxAeQG9mCtLQe07ad6vq9EUU7or+5+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7FskRHHVs/nW8LFQHUJ2mPw6arXK99yMdFQviPgRpOOv1BpTSj8Oq3Oyu5pHfeQpFiCe/bL9oMhm6sQrcusYLjYd8Kqs61wfErGZPd+lK321jOEidnwz75se+/Z5j9zpftvc8/MNeUqv0Yro1Q6VAADspL2466svrtQLeTQSU/XsTTn8WkhtTDAfb6hzxQ4r8vTH7tup53ymaINH2QLUpUjms86tnVBnlgzoAODAk7WHXkdRwg7xHrxK9qRJ/xIvUb5uUNPp4Y6jRedwXSG5EUstXSidPAJ6zb5EXAuQcI+hYoYnzqVgAoxSwCgajBv/gxDBJhnLtwa030P4sHR3a0AEuHd8DtmnfotXvNKcVVOC41LXGzTLYYPxNxzj98pTIeQ0kr/GWQ71/atHexlc1FwPek16dronlMCmU1uQJsmib6eVgVeaui248twFxuSOixt0riobSnY0a1ErE9Tl6wIYvO9K3U1V0bsC+EJtLrS2aMY92T9okTmp1tyk01qcItoSnfCgW1psn3RjfZuSGfoWM7R/uVuifLClmiHxlZr6zmRe//Ey+xuPyVsS5zFhEojRHn9XSuX4A2B7e58iFR/dg/kqs3TiB2Q/Q5+xaJ00/iKTVK5kkwrEql5oTt1zOHiD3mEXqjK+Wa14r9vKp6+TgZLjtu5ySN5dshw3jMakjmtazDfomPgUARWSW9+qx2Kfg8ED6WLlGk/47n6nDvJ3UJ8kXvKy0DxJP3osj5RuyCSqt3ckCknYaMFxKZgqHj5X1O1/AJ/D4CO2wg1WqkDpz3fDGOaDhAonTIXTdkLrtZ6hy61NaxQEu195Q/YhUBasEIP/rWk/+qtjYDhghPgyv3enrFstx2poeWGKPG6OZN77SsUOG6+41OemMY5IVuCrjJPQ75/Pil2E2mUIFcamo25sYdmy4E+x7L0iaYXfgmMkNHXkEswYkQuHnhkeOXD1QanqqWqIz/DA7CIaoDYfZQYCthaSM3CKhEZ1XYmBGC1aMEXjsd4WFQPcMdDmSL9R7kjwDTreuUJEu1QuytA/50bpoMPHb9TYGupL5z9h5/evTlRUq+TxuE8udy32NT31znm4QWzA227l/rVVhxVeHzKh3mOdVFcdT5vNMSgc1L4TQz+18C9DoWwLOZM2FSFi8QobuPTZkRdUohtQKfkxVGtO4jxmF0TD5LaUSkumxA5Y+/7jAl1vrKsx3xmzdnP0khlgiQ81AMWy9mrVX7Q/ZDYPTj0aDmqygeL4HmijJojTQhVGStV1VBVYjGZ7OWmoSMxeH9IWr1gb5V7arTI8fHE5EwM+GJLFNb4ex309BTv3uIsjdeW+7kWqqHlCOwuHVNda4SyAmxCzYTXM8vUUL53/cbVokAS2rrnjCDyZjH1jieViq9+0s8CrmHH9x9BmDagha75Tw+hMRgqbBGegehOhBqSdkrChoRxCn2M/KBoDd4Qd8Lv1R

Note that `omega` has been deprecated since Coq 8.12, so better use `lia` instead.

https://coq.github.io/doc/master/refman/changes.html#version-8-12

On 22/12/2020 21.21, Adam Chlipala wrote:
It's certainly a good exercise to learn how to work with "le" proofs in a more fundamental way, but your example falls within linear arithmetic, a decidable theory, so there is a very simple proof.

Require Import Omega.

Theorem le_to_exist : forall n m,
    S n <= m
    -> exists k, S k + n = m.
Proof.
  intros.
  exists (m - S n).
  omega.
Qed.

On 12/22/20 3:16 PM, Patricia Peratto wrote:

I want to prove:


Theorem le_to_exist (n m:nat)(p:le (S n) m):
exists_prop nat
(fun (k:nat)=>add (S k) n = m).


Patricia
------------------------------------------------------------------------
*De: *"Patricia Peratto" <psperatto AT vera.com.uy>
*Para: *"coq-club" <coq-club AT inria.fr>
*Enviados: *Martes, 22 de Diciembre 2020 17:04:08
*Asunto: *[Coq-Club] cases in leq proof

Is there some way to make a case analisis over a proof
of a leq proposition?

Regards,
Patricia





Archive powered by MHonArc 2.6.19+.

Top of Page