coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jean Goubault-Larrecq <goubault AT lsv.fr>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] A well-order on lists of natural numbers
- Date: Fri, 26 Nov 2021 08:49:37 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=goubault AT lsv.fr; spf=Pass smtp.mailfrom=goubault AT lsv.fr; spf=None smtp.helo=postmaster AT olive.lsv.ens-cachan.fr
- Ironport-data: A9a23:KZ3/o6NwPluq/O3vrR3plsFynXyQoLVcMsFnjC/WdQGxgTl30WABnGceWG7SOquLMWenf9B1aY62p0gE6sSEv4NqS1BcGVNFHysb85KdbTi6Bh6tZH3KdpWroHqKXqzyU/GYRCwPZiKa9kjF3oTJ9yEmjPjRHOSkUYYoBwgoLeNaYHd54f5cs7Vh6mJYqYDR7zKl4bsekeWHULOW82Ic3lYv1k62gEgHUMIeF98vlgdWifhj5DcynpSOZX4VDfnZw3DQGuG4EgMmLtsvwo1V/kuBl/ssItShk6j2NEkRXPjfOxPLgXNdW6GkxBZYzsAw+v9gZLxGMh4R22zPxYwhoDlOncTYpQMBMarRku0AVwVwFzpge6NckFPCCSbl6JHDlh2un3zEmaw1VhtpbeX04N1fCmZXsPccNToldQGGn+vwwbShS+AqiN5LESVBFJdH7ysmkCWAWK5gGYSZFv2MvoUBgiNr05gIQOKBMuMHTxZvSDXJRQkWYgJPTMoq9Auzrn77ciNV7laOu+w5+QDuIMVK+OCFGLLolhaiHK25X3p0p14qO0z+BhAEOZqb0iTD/3S3w+TGliPyXsQcDtVUM9YCbEK7ngQu5N8+DDNXYsVVTma6QMwZJVZ8Fu8Gs/0p7ELyJjXid0TQnZNH1yLwn/JUCPN85hvlJm/8i+qGLjBscwOto+DKeCP7qfLGG7NJcx7U6eRTjYCo
- Ironport-hdrordr: A9a23:sqqRw6pfSa5GBaoxMeGAdCkaV5peeYIsimQD101hICG9Hfb1qynDppkmPGHP5gr5MUtI8bu90cK7Lk80m6Qe3bUs
- Ironport-phdr: A9a23:2s3rzRSwF5iH+QJpg877vqjTENpsonWfAWYlg6HPa5pwe6iut67vIFbYra00ygOTBMOGsrkd07uempujcFRI2YyGvnEGfc4EfD4+ouJSoTYdBtWYA1bwNv/gYn9yNs1DUFh44yPzahANS47xaFLIv3K98yMZFAnhOgppPOT1HZPZg9iq2+yo9JDffRhEiCC9bL9vIxm6sBndu80LioZ+N6g9zQfErGFVcOpM32NoIlyTnxf45siu+ZNo7jpdtfE8+cNeSKv2Z6s3Q6BWAzQgKGA1+dbktQLfQguV53sTSXsZnxxVCAXY9h76X5Pxsizntuph3SSRIMP7QawoVTmk8qxmTgLjhiUaOD4j6GzZicJ+g61Vrxy8uRJ/zY7ab4OJO/RxZa7dYdAXSHBdUspNWSFMAIWxZJYPAeobOuZYqpHwqV8QohSkAwmnGeLhyjhVhnDtx6I6zuAhER3f0AImBd0Oqm7Uo8vpO6cLTOu4y6bIzTLeb/xNwzj99YzIcgw6rPGIRrJwb9DdyUc1Fw7ciFibtIPqMS+P2OsXr2ib8/RvVfipi2M/pA98pjihytojhITLho8Y1FTJ+Dh4zYg1ONC0VVB3bNqmHZdNty+XOYR4TMMhTmxntis3y6MKtJ+ncSUKx5oq2RjSYOGJfYiP5xLsTueRITFgiX15f7K/nRCy/lakyu34TMW7zktFrjdDn9LRtX4NzwTe5tWJR/Z+5EutxziC2x3J5uxHPEw4j7TXJpEiz7Ioi5Yev0fOEjXolEj4kaOabFso9vSr5uj9f7nrpZmRPJJuhA7kKKQhgMm/DPw4MgcQW2ib/vyx1Lrn/U34XrVFkOc6kq3CsJDEP8gUuKi5AxRM3ok/8RmwEzem384enXUdIlJFYgqLj4nvO17QPPD1FeqzjlqvnTtx2fzLMKDtDo/OI3TeirvtY7lw5k1ExAo2199f5pZUCr8bIPL0X0/8rNPYDhgkMwOv2ennFdF91p8FVGKLGa+ZLrnesVGS5u43OemDeJcVuCrhK/gi//PhkXg5mUYEcaa12ZsXdWu3E+99I0SZZHrsms0OHX0Lvgo4VuzqiUeNXSRdZ3aoDOoA4WQwD5vjBoPeTKishqaA1WG1BM54fGdDX3KBGHGgWIKZUf4RbD7XBsZ7iDEPTPD1RIg83xizsBPSz6F5aOTOrH5L/an/3cR4srWA3So58iZ5Wpz1O4ClSGV1gG5OQyQomq15ugl2w1yD2K4+jeYKTbS7CNtNSRl8O4SOloSS7vj2QRyHcM3bED6b
Le 25/11/2021 à 19:27, Abhishek Anand a écrit :
> i would define an order-preserving function rank: list N -> N and the
> rest should be easy corollaries of the order preservation theorem
Hmm, such a function does not exist, if I am not mistaken.
The order type of Ian's ordering is ω^ω, while the order type
of N is only ω.
-- Jean.
>
> -- Abhishek
> http://www.cs.cornell.edu/~aa755/ <http://www.cs.cornell.edu/~aa755/>
>
>
> On Wed, Nov 24, 2021 at 11:10 PM Ian Shillito <Ian.Shillito AT anu.edu.au
> <mailto:Ian.Shillito AT anu.edu.au>> wrote:
>
> Hi all,
>
> Consider the "less than" relation << on lists of natural numbers
> defined by the following clauses (where l0 l1 : list nat):
>
> 1. If (length l0) < (length l1), then (l0 << l1)
> 2. If (length l0 = length l1 = n) for some (n : nat), then follow
> the usual lexicographic order on n-tuples.
>
> I strongly believe that this is a well-order on lists of natural
> numbers. I am interested in this property as it should help reach a
> strong (transfinite?) induction principle like the following:
>
> Theorem listnat_strong_inductionT:
> forall P : list nat -> Type,
> (forall l0 : list nat, (forall l1 : list nat, ((l1 << l0) -> P
> l1)) -> P l0) ->
> forall l : list nat, P l.
>
> Has anyone ever tried to formalise such a relation? Any reference,
> comment, or advice is welcome.
>
> Best,
> Ian Shillito
>
- [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Michael Sÿfffff6gtrop, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Dominique Larchey-Wendling, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Vedran Čačić, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Abhishek Anand, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Dominique Larchey-Wendling, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Jean Goubault-Larrecq, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, manoury, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Daniel Schepler, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Daniel Schepler, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Frédéric Blanqui, 11/26/2021
Archive powered by MHonArc 2.6.19+.