coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: manoury <pascal.manoury AT lip6.fr>
- To: coq-club AT inria.fr
- Subject: Re: [Coq-Club] A well-order on lists of natural numbers
- Date: Fri, 26 Nov 2021 12:52:49 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=pascal.manoury AT lip6.fr; spf=Pass smtp.mailfrom=pascal.manoury AT lip6.fr; spf=Pass smtp.helo=postmaster AT osiris.lip6.fr
- Ironport-data: A9a23:THSJcaN+lvV38qnvrR3tlsFynXyQoLVcMsFnjC/WdQLo0zlx0TdTyDMXCzrUa/qCMzTxL953O9m/9koOucCBv4NqS1BcGVNFHysb85KdbTi6Bh6tZH3KdpWroHqKXqzyU/GYRCwPZiKa9kjF3oTJ9yEmjPjRHOSkUYYoBwgoLeNaYHd54f5cs7Vh6mJYqYDR7zKl4bsekeWHULOW82Ic3lYv1k62gEgHUMIeF98vlgdWifhj5DcynpSOZX4VDfnZw3DQGuG4EgMmLtsvwo1V/kuBl/ssItS+k6z6aQsOQ6aMewaU4pZUc/H52F4Y/HN0jP59b6J0hUR/011lm/hpwc5GvJj2TA4vObDWicwZUgEGVS9kVUFD0OGceCDg4ZH7I0ruKSK2naswXCnaJ7Yw8eFuRGpK6PYwMyEIdhnFhuSswbv9RPMEuyiJBN2zadhZ52U5mGmfVeJ8FMiFGfiUu8sDiW9229QRSN/AQeEcTxZvSDXJRSFVHENOUMdm2L+87pXkWzpDqUiUvuwz4nCNigJruIUB+eH9IrSiLfi5VG7Bzo4Hw4j4Pv3eHNuEyCCE6TSoh/eR2y3hMG7XPKPt7eZk2TV/2URKYCD6l3PiyRV6tqJ6c9ZeMxJS9DBGQW0a6hmwVtekN/GniCfsg/PfMua818U+6RnTjKTOi+pcLgDoURYZAOEbWAQKqfDGG7NHcx4FxdCijVFNdU+gyw==
- Ironport-hdrordr: A9a23:EJVtWqtqpYpG86hI31T8plIc7skDcdV00zEX/kB9WHVpm6uj+PxG/c526faaslYssR0b9OxofZPwJE80i6QFhbX5TI3NYOCOggLBR+tfBMnZsl7d8kbFl9K1u50QEZSXh7DLfD5HZL7BkW6F+7pM+qj/zJyV
- Ironport-phdr: A9a23:+KBSLREH+DWLoOE+bgAXRZ1Gfz9MhN3EVzX9CrIZgr5DOp6u447ldBSGo6k31RmUB86As7ptsKn/i+jYQ2sO4JKM4jgpUadncFs7s/gQhBEqG8WfCEf2f7bAZi0+G9leBhc+pynoeUdaF9zjaFLMv3a88SAdGgnlNQpyO+/5BpPeg9642uys5pHfeQVFiCSybb58MBm9sBncuNQRjYZ+MKg61wHHomFPe+RYxGNoIUyckhPh7cqu/5Bt7jpdtes5+8FPTav1caI4TadFDDs9KGA6+NfrtRjYQgSR4HYXT3gbnQBJAwjB6xH6Q4vxvy7nvedzxCWWIcv7Rq0yVD+/7alkVQXohT8HOTEl/2/YhdF+gqxVoBy/pRNxwInabZqJNPpne6PRYdMaSXZDU8tXSidPApm8b4wKD+cZOOZXtY/9p1wTrRukBQinGeTiyidSiX/twaI1yeAhHRvD3AM6GdIOt2nUrM/1NaoJVeC1zbHIwDTZY/NYwzfw8Y7FeQ0urv+QR7x/a9bRyVUxGAPfiFWdsYPrMjyL2+oCs2WV7/dsWf+vhWMprwx8ozehy8gyhoTIiIwYxF7K+TlkzYsrJ9C1SE12b9CmHZZNqi2XKYt7T8wkTmp1tig6zbgGtoS6fCgM0Jko2xnfa+aBc4eW5hLjUPydLilli3J4fr+0mhW88VC4x+HhWMS4zkxGojRbntTOrHwA1gDf5tKJR/dh5kutxDiC2x7J5u1aP0w5l7DXJp0hz7Iql5cev0LOFTLslkrslq+ZbEAk9/Co6+v5ZrXmoYeRN4hvigH/KKQum9e/Df48MggPR2iW+P6w1LP5/UHhQbVKiOM5krXBvZzHK8kXuLS1DxFL3osh8RqyDiuq3M4WkHUbNF5FfQiIj4ntO1HAOvD4CvK/jky0kDhx3PDJIqfuApHXInjGirjhe7F961NGyAsz1t1f45NUCqkALf7pVE/xrsTUDgUlPAys3+bnFNJ925sCVmKIG6+VKb/dsVuV5u00OOSMf48UuDPlK/c//fLujHk5mUUcfaazx5cXZmq4TbxaJBCSZmOpidMcG08LuBA/Rarkkg6sSzlWMnO7WaUh/CBzXJqvFozKQsaoibqGwT2qNplXfj4ABEraQiSgTJmNR/pZMHHaGcRmiDFRDdBJqqcmzhC0tRS8z7t/cKza4H9B3XoM/Nx0/7OVmwtgrFSc6uyZ0nnTCW9uzDtgeg==
Dear Ian,
as a case of ω^ω ordering, I would be interested in the kind of application
you have in mind.
Pascal Manoury.
> Le 26 nov. 2021 à 08:49, Jean Goubault-Larrecq <goubault AT lsv.fr> a écrit :
>
>
>
> Le 25/11/2021 à 19:27, Abhishek Anand a écrit :
>> i would define an order-preserving function rank: list N -> N and the
>> rest should be easy corollaries of the order preservation theorem
>
>
> Hmm, such a function does not exist, if I am not mistaken.
> The order type of Ian's ordering is ω^ω, while the order type
> of N is only ω.
>
> -- Jean.
>
>>
>> -- Abhishek
>> http://www.cs.cornell.edu/~aa755/ <http://www.cs.cornell.edu/~aa755/>
>>
>>
>> On Wed, Nov 24, 2021 at 11:10 PM Ian Shillito <Ian.Shillito AT anu.edu.au
>> <mailto:Ian.Shillito AT anu.edu.au>> wrote:
>>
>> Hi all,
>>
>> Consider the "less than" relation << on lists of natural numbers
>> defined by the following clauses (where l0 l1 : list nat):
>>
>> 1. If (length l0) < (length l1), then (l0 << l1)
>> 2. If (length l0 = length l1 = n) for some (n : nat), then follow
>> the usual lexicographic order on n-tuples.
>>
>> I strongly believe that this is a well-order on lists of natural
>> numbers. I am interested in this property as it should help reach a
>> strong (transfinite?) induction principle like the following:
>>
>> Theorem listnat_strong_inductionT:
>> forall P : list nat -> Type,
>> (forall l0 : list nat, (forall l1 : list nat, ((l1 << l0) -> P
>> l1)) -> P l0) ->
>> forall l : list nat, P l.
>>
>> Has anyone ever tried to formalise such a relation? Any reference,
>> comment, or advice is welcome.
>>
>> Best,
>> Ian Shillito
>>
- [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Michael Sÿfffff6gtrop, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Dominique Larchey-Wendling, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Vedran Čačić, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Abhishek Anand, 11/25/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Dominique Larchey-Wendling, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Jean Goubault-Larrecq, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, manoury, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Daniel Schepler, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Daniel Schepler, 11/29/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Ian Shillito, 11/26/2021
- Re: [Coq-Club] A well-order on lists of natural numbers, Frédéric Blanqui, 11/26/2021
Archive powered by MHonArc 2.6.19+.