coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: mukesh tiwari <mukeshtiwari.iiitm AT gmail.com>
- To: coq-club AT inria.fr
- Subject: [Coq-Club] Alternate Definition of Well-Foundedness
- Date: Sat, 18 Feb 2023 20:54:20 +0000
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=mukeshtiwari.iiitm AT gmail.com; spf=Pass smtp.mailfrom=mukeshtiwari.iiitm AT gmail.com; spf=None smtp.helo=postmaster AT mail-lf1-f48.google.com
- Ironport-data: A9a23:TNkCK6rnfFzT6v1EbvrAeoIngQxeBmLHYRIvgKrLsJaIsI4StFCzt garIBmDaK2OM2L2fNhwa9zl8RkH65KEmINhG1Rs/n03HyoWp+PIVI+TRqvSF3PLf5ebFCqLz O1HN4KedJhsJpP4jk3wWlQ0hSAkjclkfpKlVKiefHkZqTZMEE8JkQhkl/MynrlmiN24BxLlk d7pqqUzAnf8s9JPGj9Suv3rRC9H5qyo42tC5wxmP5ingXeH/5UrJMJHTU2OByCgKmVkNrbSb /rOyri/4lTY838FYj9yuuuTnuUiG9Y+DCDW4pZkc/DKbitq+kTe5p0G2M80Mi+7vdkmc+dZk 72hvbToIesg0zaldO41C3G0GAkmVUFKFSOuzdFSfqV/wmWfG0YAzcmCA2kaGYwY9f9UA1hx1 tIZdTYpcEi+vLOflefTpulE3qzPLeHuNYIb/3VulHTXUaZgTpfETKHHo9Rf2V/chOgURaeYN 5dfMGQwKkiQC/FMEg9/5JYWmfqri2L/bzxHoUiU46s24nTW5AN02bnpdtHSf7RmQO0ExR3G/ DucpwwVBDkzbeKuxgTawEj1m7DAvznVRdo4NOCRo6sCbFq7nzRPUnX6T2CTqv6gz0W6Rth3M F0R4iNorK4o9UXtQMOVYvGjiHuNvxpZX9QJVuNmuEeCza3b5wvfDW8BJtJcVDA4nOMSRDwlz 3yLpuzKKz0ytpmLEU+mp57B+FteJhMpBWMFYCYFSy4M7N/ivJw/g3rzojBLQPHdYjrdSWGY/ tyakMQtr+5M0pNThs1X6XiC0m38/MGYJuIgzlyPBjrN0+9vWGKyi2WVBbXz6P9BKMOdQADEs iRU3ceZ6+8KANeGkynlrAQx8FOBtq3t3N702wUH83wdG9KFpSTLkWd4vmoWGauRGpxYEQIFm WeK0e+r2LddPWGxcYh8aJ+rBsIhwMDITIq6CK+IM4IUPMEuJWdrGR2Cg2bAgAgBd2B8wckC1 WuzLK5A8F5AWPg6lmvmLwvj+eN2mntWKZzvqWDTlkz7i9JylVaaTrAKNFbmUwzKxPLsnekhy P4Gb5Hi40wHDoXWO3CLmaZOcw1iBSVkXfje9ZYLHsbdeVEOMD96W5fsLUYJIdMNc1J9zbeWo BlQmyZwlDLCuJEwAV/RMi45N+m+A/6SbxsTZEQRALph4FB7Ca7H0UvVX8JfkWAPpbc7n81nB eIIYduBCflpQzHKsWZVJ5rkoYAoMFzhiQuSNmD3KHIybrxxdTzvo9XERwrI8DVRLyyVscBln aas+DmGSrU+RiNjLv3sVtSR832Ls0MwpsdOTmrTA9wKeEzT4IlgcCPwqfksIvAzExbIxxrE9 gPPAR4nuvXHjL4l1Ob43Yev8oGjSbp4FGVnAliBvKqXNDbbzEWn04RvQOaFRhGDdWLWqYGJR /RZ8OH4C9IDxG11iotbF6156I4P/P7tmuNq9RtlF3D1cFibMLNsDX2Y181ptKcW5LtmlSape 0CIoP92BK6oPZ77LVsvOwYVVOSP+vUKkD307/5uAkHb5jdyzYWXQ3dpIBiApyxMHoRbaLp/7 78ah/cXzAijhj4BENWM1HlU/lvRCE0wafwss5VCDbL7jgYu9Ep5XqXdLS3IsbWvcNRHN3c4L gCE3JTig6tu/WucUn4RO0WU489jq8Uvgj5owmUGBWy1ofvep/pu3BRu4TU9FQtU6RNc0tNMA GtgNmwrBKCC4wZXgNNnWkayETpgHzycwFT6kHESpV3aTm6pd23DF3I8MuCz53Ik83pQUzxY3 bOAwkPnbGrOUOTu+BAtAGhJhufGT9Nj0iHjwuWcANWjDZ02RRHHk52eTzMEhDW/CPxgmXCdg /dh+dhBTJHSNAkShvYeIJab37FBcyK0DjVObt859ZxYAFyGXi+53AWPDEWDesltAfju2m3gA uxMIvN/bTiP5BysnBs6W5FVe6RVmcQ37uUsYrnofG4Kk4WOpwpT7a7/yHLMu38Jcf5Pz+ANc pjcZhCTIFy23HF0oVLAnONAG2i/YOQHWjHC4fCIwL03MKwH4c5RchAU87qrvn+qHhNt0DCKs SjiOaLH7exQ5r59vonrE5cZXgW9FszuZb7Z7CGyrNV8QtfdOujetw4uiwfGPiYHGZAzSthIh bC2n9qv53z8vZEySHH/p5aaMrtgvOGeYbJyCd3mC1V/hg6Aad/IzzpY3F7gMr1PstdWxvf/d juCcMHqKOIkAYZM9kNaew11Mkg4Ga/oSozCuCnkjfCHKiZF4Dz9NNn9qEPYNzBKRBQpZa/7J BT/4cu1x9Ziq49JOh8IKtdmD7J8I37hQaEWTMLwhxbJEliXhk6+hZW6mSoC8T3rDly2IPT+6 7/BRTn8c028hviZhpUR+Yl/pQYeA3tBkPE9NBBVscJ/jzehSnUKN6IBOJEBEYtZiTH2yIq+X jzWcW8+Em/oaFyoq/knDAjLBW9zx9DiO+sV4hQs9kKQLiO4XcaOXOsn+SBn7HN7PDDkyYlL7 D3YFmLYZnCMLlNBHI7/JcBXRc9ow/rbwjQD/kWVfwnaHUMFGbtTvJB+NFMlaMEEev0hUG3EI GE0QSZPR0TTpYsd1yp/UyY9JSz1dw8DA9nlgeljDTofV0imIDV89cDC
- Ironport-hdrordr: A9a23:zMywxKDW+4hU0grlHemv55DYdb4zR+YMi2TDsHoBLyC9E/bo8P xG+c5w6faaskdzZJhNo7C90cq7IE80l6QFg7X5VI3KNGLbUQCTXeRfBOXZslnd8u7FmtK1F5 0MT0GzMrLN5JFB4/rH3A==
- Ironport-phdr: A9a23:RdZUpxFQ5UYIua8Kj/JBGp1Gf6ZGhN3EVzX9CrIZgr5DOp6u447ld BSGo6k30RmQAtyQsqkUw8Pt8IneGkU4qa6bt34DdJEeHzQksu4x2zIaPcieFEfgJ+TrZSFpV O5LVVti4m3peRMNQJW2aFLduGC94iAPERvjKwV1Ov71GonPhMiryuy+4ZLebxtIiTanfL9/L gi6oQrMusQYgoZpN7o8xAbOrnZUdOtawn9lK0iOlBjm/Mew+5Bj8yVUu/0/8sNLTLv3caclQ 7FGFToqK2866tHluhnFVguP+2ATUn4KnRpSAgjK9w/1U5HsuSbnrOV92S2aPcrrTbAoXDmp8 qlmRAP0hCoBKjU09nzchM5tg6JBuB+uqBxxzYDXbo+IKvRxYqzTcMgGRWpYRMtdSzBNDp++Y oYJEuEPPfxYr474p1YWqBu+GAqsC/30yj9Im3T2waw60uo7HgHc3QwrAtUDsHHJrNX2KqgSS uC1zLXJzTTNdfxWwzb95JLJchAgoPGMQbdwfNHeyUkqDQzFj1GQpZb5MDOS0+QAqm6W5PdvW uyzkWAosR1xoiSxycc2jInEnoMYx1/a+Shnwos7K961RkB0b9OqDJZcqT+WOop2TM4iTG9mu CY3x7MGt5OnYiQHzIgryhDDZvKJb4WF7B3tWuiXLDxlinxlf7e/iAyz8Uim0uDzStO70FNQo iVfjtbArG0N1x/L5siGTPt95Eah1iyV2wDd8OFJJ10/m6nDK5M53LI8ip4evV7AEyL2gkn6k a6be0c+9uWn6OnqZKjtqIWGOI9ukA7+N7wjmsyhDuQ8NQgDR22b9v691L3n5EH5RLtKguAvn qnXv53XJt4XpqG+Aw9S3YYj7wiwAy2639QfmHkLNFNFeBSZgIj1I1zCPuz0APOlj1mvkDpn3 e3KM7zjD5nXIXXOk6/tfbNn5E5dzAozw8pf55VRCrwZJfLzR0zxu8LDDh85Lwy0wujmB89n1 oMfQ26PA66ZMKLOsV+N/e8vLOyMa5UUuDb5MfQq+/nujXohlV8bZqamxYEXZ2ygHvR6P0WZZ mLhjsoZHWcQogU+VPDqiEGFUTNLe3myWLs86ignB4KiEIfMXZuggKeB3Se+Bp1ZfHpKClGKE XfydoWLQe0AaCyIIpwprjtRXr+4DoQlyBuGtQngyrMhIPCH1DcfsMfmydt4/O2biRAt/CZ1R 5CYzmKAVGFon3wBXT5w3aF+vUlVxVKK0Kw+iPtdQ48Ar8hVWxs3YMaPh9dxDMr/D1qplrahT V+nRo/jGjQtVpcrxNRIZU9hGtKkhxSF3iywArZTmabYTIcs/Pf62H78b914126AzLMo2lw7Q cZUNXGnmadl9k7SBo/Vlm2Wkq+rceIX2yuevHybwz+2tVpDGBV1Tb2DWHkeYkXMqtGs417BQ qSuFbU4OxFAj8+DK7dPQtLshFRCAvzkPYeWeHq/zkG3AxvA3baQdMzqdmEaiT3aE1QBmhsP8 GyuMAE/AmKlrTubAmA+U13oZEzo/K91r3bTolYc6QaMYgUh0rO0/kRQnvmAU7YJ2blCvi49q jJyFVL73tTMCtPGqRAzNKNbKcgw5ltKzwe7/0R0I4CgIqZ+h1UfbxU/vkXg0A9yA5lBls5ip W0jzQ57I6aVmF1bcDbQ0Zf1M7zRYm78mXLnI6vL2VzF0MqX5a4V6bI5qlT/uSmmE0Mj9zNs1 NwUm3qQ65PWDRYDBIrrWxVSlVAyrLXbby8hooLMgCc0YO/k73mbhY1vWLt2r3ToN81SO66FC gLoRsgTBsz0bfcvh0DsdBUPeuZb6K8zOcqiMfqAwq+ieuh6z1fExSxK5p5w1kWU+m9yUOnNi twA3vKVxQubVij1llbns8H2hYVsajQbH275wi/hTt00BOU6bcMQBGGiLtfijNBjhJP2W2JZ6 1e5BhUH2c61fDKdalX82Utb0kFd8hnF0WOoijdzlT8utK+W2ifDlv/jeBQwMWlOXGB+jF3oL OBYlvgiVVOzJ0gsnRqhvwPhwrRD4b54JC/VSFtJeC7/KydjVLGxv/yMeZwH5JQtuCRRGOOyB DLSArvgoBYB0z/iAGJExXY6djC2v732mhV7jCSWK3M7oHfCeM52zAvS/5SGHa8XjmdAHXcnz 2WHTlGnWrvhtc2ZjZLCrvyzWyq6W5tffDOqhYKMuS2n5HF7VBi2nvS9gNriQkAx1S720cUvV D2d9k6tJNm2kf3kbqQ7LhoNZhe08cdxF4Bgn5FlgZgR3SJfnZCJ5T8dlmy1N9xH2KX4ZX5LR DgRwteT7hK2vS8rZn+P2Y/9UW2Qh8V7YNzvKGYL2S8m79xLF66O7fpFnCppp3K3qAvQZb52m TJXmp5MoDYKxvoEvgYg1HDXB60REFJYIS3zng6JqdG/rblSTGmqeLm0kkF5mJryadPK6hEZU 3H/dJA4GCZ25cgqK1PA3kr47YT8ccXRZ9Ye5VWE1g3NhO9PJNcth+IH0GB5bHnlsyRvmItZx VR+mIu3t4+dJyBx8bKlV1RGYybtaZpb+ymx3/0D2J/Hh8b1QsonQnJRANPpVa76Tm5U76+8c V/QSHtk7S7KfNiXVQ6HtBU48TSWS8rtbzfPYyNBhdR6GEvDegoF3FFSDG18xtljTkir3JCzL x0/v2xXvw+i7EMLk7INVVG3U3+D9lj0LG5uFd7HakIRt18K5l+JY5XGvqQqQH4ertv561bUY m2DO1YRUjpPAx3YQQilZv73u7yiu6CZHrbsdaOfJ+XT77UEB7HQgsvwmop+o2TWb5vJYykkV qxhnBIEBCExGtyFyW9WFWpNzHOLNJTd/FDlq0gV5oip+fDvEmoD/KOpDL1feZVq8hGy2+KYM vKIwTx+InBe348NwnnBzP4e2kQTgmdgbWvlF7NIriPLQK/K/80fRxcGdyN+MtdJ5KMgz0FMP 8DckNb8yr9/iLY8FV5EUVXrnszha9YNJimxM1bOBUDDM7rjR3WD28bsfaa1UqFdls1Rvhy0/ DKVSgrtYmTFmD7uWBSid+pLiWDTPRBTvp28bgc4CWXnS4GDCFXzO9t2gDsqhLws0ymSZChMb H4lLRwL8u3DiEEQyu9yEGFA8Hd/eOyNmiLDqvLdNo5Tq/xgRCJ9i+Nd5n0+jbpT9iBNAvJvy 06w5pZjpU+rlu6Xx39pSh1L/3xOmYGGpkV+OLrQ7JgGWHfF4Bcl4mCZChBMrNxgQI6K2egY2 p3UmaT/JS0XucrT5tcZDtPIJdivNXMgNV/tFmeRAldVCzGsMm7bigpWl/TYpRj35tAq75Prn pQJULpSUlc4Q+gbBkpSF9sHOJ5rXzkgnNZzbeYN7Hu66R3fHYBU4sCBWfWVDvHibj2eiOscD /Pt6bz9JIUXcIb83h46ArGVtIvPEkvUG9tKp384BjI=
- Ironport-sdr: 63f13b17_yyD9hl9SQAli3/BK2gd8pgIASO8nsSMsybsUbfQwrtqiehG uQ3dvAz2s7edASj4RJhBgcql7Ya+bopjW6nvcqQ==
Hi everyone,
Recently, I stumbled across the book ML for the Working Programmer [1]
and saw this text,
"Infinite decreasing chains are intuitively appealing, but other
definitions of well-foundedness permit simpler proofs. For instance, ≺
is well-founded just if every non-empty set contains a ≺-minimal
element. There also exist definitions suited for constructive logic."
(see page 246 of[1]).
In all my formalisation, and the ones that I have seen on GitHub, all
of them have used infinite decrease chains, defined in Coq library
[2]. My question is: are there any other Coq formalisations that use
other definitions of well-foundedness, not the Acc one [2].
Best,
Mukesh
[1] https://www.cl.cam.ac.uk/~lp15/MLbook/PDF/chapter6.pdf
[2] https://coq.inria.fr/library/Coq.Init.Wf.html
- [Coq-Club] Alternate Definition of Well-Foundedness, mukesh tiwari, 02/18/2023
- Re: [Coq-Club] Alternate Definition of Well-Foundedness, Frédéric Blanqui, 02/18/2023
- Re: [Coq-Club] Alternate Definition of Well-Foundedness, Dominique Larchey-Wendling, 02/18/2023
Archive powered by MHonArc 2.6.19+.