Skip to Content.
Sympa Menu

coq-club - [Coq-Club] review of Max Zeuner defending “Constructive Algebraic Geometry”

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] review of Max Zeuner defending “Constructive Algebraic Geometry”


Chronological Thread 
  • From: Christopher Mary <admin AT AnthropLOGIC.onmicrosoft.com>
  • To: "nicolas.tabareau AT inria.fr" <nicolas.tabareau AT inria.fr>, "coq-club AT inria.fr" <coq-club AT inria.fr>, "cartier AT ihes.fr" <cartier AT ihes.fr>
  • Subject: [Coq-Club] review of Max Zeuner defending “Constructive Algebraic Geometry”
  • Date: Fri, 4 Oct 2024 12:37:32 +0000
  • Accept-language: en-US
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=anthroplogic.onmicrosoft.com; dmarc=pass action=none header.from=anthroplogic.onmicrosoft.com; dkim=pass header.d=anthroplogic.onmicrosoft.com; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector10001; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=J3aoYvWhnJeyAt38ax0Kb6JgsgZOzRekRq2squFU9Hs=; b=X69I84JZ6TJIJyWWsq6lzJh8v+ugmH2wT0ZAk18U0xr2z9N4I4d+8P7BWwHj/PfXdEqkwJuDCMcfDZX66ytXVTPQ1oGey0w5wsNr9Mq+3aucCsx+RUis4AyCtEnPUfg4AjRDQAc1kOuYxOQW4fSB1KjOnoUkBekn0uLZaQMYchUpTbs44pMZXlV9Yw/UwXUHYXKaEO7hTViEOGvxggskYnA2D2JXPFixjU0rQEDmIvKjuOGvwLL1zkB/1llm6wK4fX8uwn3NAIeKyhHn9KJ1q1KwlQaYRDpNapyw8BQ+KRjd0lSb8AJ2ZRM5AafMtxpZEqes52ZguqmsjbZHCOKMEg==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector10001; d=microsoft.com; cv=none; b=K+Lmi1jll3Smfajn+ZDDTQsByY0Eyv0YCWttAJUK8iAO+iaQyu9BBSjkn5DJGYV69Tm6HbBJ98H0AQAjH6+LHFouJAJe0rULgXTnYnikI3OdnDzIF9ZUnyPqNwQ3RbOZTHj19gg93HqRH4ezgUs/T11W2GZAYWe/eVMsJO11CuNsxOAWJSrPkQpDT+b7oDKfkBE1tk3zbZnaTpYFOoUoM9PhJqnHxYoYnjNDxpLBiquOreMWK+7gudx8kyIag5+X3Q6NEKTihkJ1d0U6aSREBkDA8XdJJhShxKetaYXMwM0hmv7BbBFfeDuu9lNQqfg/gYf90ISmcQFTX8w4UlOy8w==
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=admin AT AnthropLOGIC.onmicrosoft.com; spf=Pass smtp.mailfrom=admin AT anthroplogic.onmicrosoft.com; spf=Pass smtp.helo=postmaster AT NAM11-DM6-obe.outbound.protection.outlook.com
  • Ironport-data: A9a23:XDQv56oxvB/XRgkClBYMqmUu1R5eBmKFbhIvgKrLsJaIsI4StFCzt garIBnXP6zcajPwKdh3O9m1oxsPu5DdzoBmTFRoqy0wQilH+OPIVI+TRqvSF3PLf5ebFCqLz O1HN4KedJhsJpP4jk3wWlQ0hSAkjclkfpKlVKiefHoZqTZMEE8JkQhkl/MynrlmiN24BxLlk d7pqqUzAnf8s9JPGjxSsvvrRC9H5qyo5GpA5gBmPJingXeH/5UrJMJHTU2OByCgKmVkNrbSb /rOyri/4lTY838FYj9yuuuTnuUiG9Y+DCDW4pZkc/DKbitq+kTe5p0G2M80Mi+7vdkmc+dZk 72hvbToIesg0zaldO41C3G0GAkmVUFKFSOuzdFSfqV/wmWfG0YAzcmCA2lrZrMS0OIpJlh/9 PcFcyomTy2ap9CPlefTpulE3qzPLeHNFaZG4zRM6G+cCvwrB5feX6/N+NlUmi8qgdxDFurfY MxfbidzaBPHYFtEPVJ/5JAWwL/u3yGgNWcC8xTM//FfD2v7lGSd1JDkPN/UfPSDQ9lVhEGAo mXJ/m+/BRcfNdeFziGC/G7qjejK9c/+cNNCTublrKQy6LGV7jEvEANGD2ajmNu4zWq4deJuL kYIywN7+MDe82TwFYOhAHVUukWsuAIVUdNKHuQS+gCIwLDdpQefHGkNCDBbAPQts9ZzTjg33 HeSjtbxDHputqeUQDST7N+pQSiaPCEUKSoOYHECRA5cut7l+thp1VTIU8ppF7OzgpvtAzbsz juWrS84wbIOkcoM0Kb99lfC696xmnTXZlNu2A/9WjyC1zJ4b5P+faeJ1EH7388Vee51UWK9l HQDnsGf6sUHApeMiDGBTY0x8FeBt6ft3Nr00Q8HInUxywlB7UJPamy53d2TDEJgM8JBdTq3Z kbW4FpW4sUKZiDsarJraYWsDchs1bLnCdnuSvHTaJxJf4R1cwiEuippYCZ8PlwBcmB8yMnT2 r/CK65A6Er274w6kFJaoM9AitcWKtgWnz+7eHwC503PPUCiTHCUU6wZF1CFc/o06qiJyC2Mr IwAZpvSl0wEC7WhCsUyzWL1BQBbRZTcLcCnw/G7isbdeVs9cI3cI6OPnu96K9Q190irvrmRo y3gBSe0N2YTdVWccl/WNRiPmZvqXJ1lqmk8MzBkNlGywxAejXWHvc8im28MVeB/roRLlKYqJ 9FcIpnoKqoUEVzvpW9CBaQRWaQ5KHxHcyrVYnL5CNX+FrY8LzH0FijMIlS2pXBUX3vm3Sb8y pX5vj7mrVM4b1wKJK7rhDiHljtdZFBEwLMiDXjbaMJeYlvt+4VMIin8xK1/acIVJBmJgnPQ2 w+KCF1K7aPAsq0kwunv3KqkloaOF/chP0x4G2KA0626GxOH9UWewKhBct2yQxbjaE3O9p6PX 95ll8PHDKVfnXJhkZZNLLJw/Kdvu/rtv+B7yypnLlXqbnOqKJlqJEOB1sweqZFgl59ihC6rU BjS5tBlH6SDY+X7IlgoOTt/P/ii1O4VqBbW//8aMEX33w4p3bulAGF5HQiAtzxZF5RxaLga+ OYGvNUHzQ6WkTwWC8aiogEP0F+TP1ssdakDnbMLMr/B0wYE5AlLXs3BN3XQ/pqKVeRpDmArB T2x34/pmLVWwxv5QUoZTHTi87JUusUThUps0lQHGlWun+jFjN8R2Dl602w+biZR/yV9/9NDA EpZHGwrGvzW5BZtvtZJYE60EQIYBBG5xF34+2FUqELnFXuXRk7/B0xjH92S/XIp0XNWJRla2 7C69FzLcxjXeOPJ4y9jfnI99tLCS4Rq+xzgifKXOZ2PP6MHbArPho6sYms1qCXbP/4huX2fp cdW0bZxTYbZKR8vp7YKDtjG9LYIFzGBCm9wYdBg26IrOljhICGX4mGjF3yAZskXBfju9B7hB +NMOM5wChea0gyfpGshAZ9XGad+xqI07oE8IrnEdHAPouadpGAxsbb71Cv3tEk0SfpAzOc/L YLwcWqZM2qy3HF7pU7EnPNmCEGZP+YWQRLa5/+k1tkGDLcBu7xIXWBu9+LspFSTEg9s3yzMj TP5f6WMktBTk9V9rbXjAoBoJluRO9jscM+q7QrqkdBFTe2XAPf0rwlP92XWZVVHD4AwBeZyu 6+G6uPs/UX/u70zbWDVtr+BG4RN5uSwROBnCd32HlYLgRq9XNLQ3DVb91CaMZBplPZv1vujT Sa8a+qycocxcPVZz3t3dSNfMkg8D4LaU6Tenh6+/s+8UkUl7Q/6Ld2c5SDIa0NffXQ2IJHQM FL/lMuvwdF6l75yIiE4KctoOaIlH2+7a5AaL4XwkRK6EliXhkizv+q+tBg4thDOJHq2MOf7x pPnRhL4ThO5vfDXxv4ItYVNmwAdVithiNYWb0hG3cBEjQmnPTRXMcUcLpQ0JZVGmQPi1JzDR W/sbUlzLQ7fTDh7YRHHz9C7ZTimB8sKIcbfJBUy2X+tewOaJdinO6Rw0QtG71NdWCrR/Mv+J f4wonTPbwWMmLd3TuMt19mHqOZAxNaB41kX+Er4wvfAMzxHDZokjHVeTRdwDwrZGMTwlWLOF 2g/ZUZAZGqZEUfRM8JRS0R5KSEjngHE7msXNH+U4dPlpY+k4vVKy6T/N8HNw7QzVpk2C4BUd 0znZVmmwj6w4WMSi5sLqthyoK5TCNC3JOaYApLnZzUvm/CX1jx6EeIExCYBdZR3skoXWVbQj SKl7HUCFVyIYhIZkqGfzQISvYl9SDQQBjXOlxTyviLCjQd/9dXCZhy210juHPkccUQ4U5lwH F/+rXp9omF6cBPCjBwn77E3gwLCBsscU37ZTiovU5X+1A+2T3NQH6xg1Ed80M9N9HpDxcNfc 6P5PxAV5te8Ri3Wt+z7tI5xX1Slh+5p9sc/Z3vB9RR3FsG3zIf8fNeybLG8SwcZmxZtXlodl MbUbjQzzCrI5BJJUGUNV9L5EvRBB3fR6178wHw5EcBAvae49bc+sNi/5wyvcx5RTqKPScCIa 0C5DTNX1/ooCQmFV/W8SWrUPmgVFSyCO6QhaobZ2Ier6pW6
  • Ironport-hdrordr: A9a23:4H44MK4cZcTPpZ8+BwPXwVyBI+orL9Y04lQ7vn2ZFiY5TiXIra qTdaogviMc0AxhPk3I6urwQZVoJkmsvKKdgLNhS4tKOTOLhILGFvAH0WKP+Vzd8k7Fh6ZgPM VbAs9D4bTLZDAU4/oSizPIcOrIteP3lZxA8t2urUuFIzsLV4hQqyNCTiqLGEx/QwdLQbAjEo CH28ZBrz28PVwKc8WSHBA+LqL+juyOsKijTQ8NBhYh5gXLpyiv8qTGHx+R2Qpbey9TwI0l7X POn2XCl+ieWrCAu1PhPl3ontprcejau5p+7Qu3+4gowwDX+0mVjUJaKv6/VX4O0aOSAR0R4a HxSl8bTr9OAjXqDyqISFLWqnTdODpC0Q6Z9XaIxXTkusD3XzQ8Fo5Igp9YaALQ7w46sMh7y7 8j5RPti3N7N2KyoM3G3am7azh60k6v5XYym+8aiHJSFYMYdb9KtIQauEdYCo0JEi724J0uVL AGNrCq2N9GNVeBK3zJtGhmx9KhGnw1AxedW0AH/siYySJfknx1x1YRgMYfgnAD/pQgTIQs3Z WxDo140LVVCsMGZ6N0A+kMBcOxF2zWWBrJdHmfJFz2fZt3S04la6SHkYndyNvaBqDglqFC5K gpeGkoylIPRw==
  • Ironport-phdr: A9a23:0jXDERaQ2eduqfSCrQcvg43/LTEp3oqcDmcuAnoPtbtCf+yZ8oj4O wSHvLMx1wePB9+AoK8dw8Pt8IneGkU4oqy9+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7F skRHHVs/nW8LFQHUJ2mPw6arXK99yMdFQviPgRpOOv1BpTSj8Oq3Oyu5pHfeQpFiTShbb9oM hm6swvcusYWjId/N6081gbHrnxUdutZwm9lOUidkxHg6Mmu4ZVt6T5Qu/Uv985BVaX1YaE1R qFGATolLm44+tTluQHMQgWT6HQcVH4WkgdTDAje8B76RJbxvTDkued7xSKXINf5TbEwWTSl8 qdrVBrlgzoJOjIl7G3ajNF7gaRGqxyjuhN/2ZbZboGLOvRjYqPTc9AUSnZOUMleTCFBHpizY 5cTA+YdIepVrY/wrEYOoxukAgmsAfvixyFIhn/s3K06yPghEQbe3AwgAd0OqmnfotLvO6cIU eG+0a7Fwi/eYPNT2Df97pPFfwwnofGQXbJwa83RyVEpGQ3cj1ueqpLoMymS1uQLtmib7vZvV fioi248rAFxrCSvyt0whYnOg4IY01bJ/jh2z4gpP9O3UlJ7YcK6H5tKsSGXL5d6T80tTmxnp Ss21rILtJy7cSUI1ZkpyR7RZ+KHfoWL/h7uVfidLDl3in55eLyyiQu//Eq8x+DhVcS5zktHo yhDn9LRuH4N0BnT5dKGSvt75kqh1jeP1xzT6uFZOk84j7bUK5kkwrIoi5Ucq0XDHiv2mUXsk qCWaEQk9fam6uT8eLnmop6cN4l3ig3mKKQhhMKyDOU4PwQUWWiU5/i82bv+9kP6WLVHlvI7n rXDvJzHOcgWpLS1DxFL3ost8RqzEimq3doAkXUZLV9JZByKgo30N13SO//1DPKyjlepnTdl2 vzLO7jsDojJI3XFjbzsY7J961NHyAov099f/Y9aCrAAIf3tQkL9qNrVBQIjPQOu2eboEtB92 5seWW2RBq+ZN7vfv0eU6+woPuWAeZYZtjj6JfUk/vLuimQ2lkEHcamuwJsXdGu3HvN7I0Wff HXgmM8BEX0NvgoiUuPllEGCUT9UZ3a0Ra484Sw7CJ6iDYfEQYCtg6aN0zu8Hp1TfmxGC1aMH mn0d4icVPoAdDieLtJ9njEGT7StVZEt2B+0uAPn1bZqIPLY+igCupLi0Nh16ffTlRY39TFsF cuSzmSNT2Bynm4TXTA22rx/oUxnyleEyah4h/tYFdNS5/xVSAs6Mpjcz+l7C9/uQALBecyJS FGoQtW6Gz0+UtUxw9oWb0Z7ANqtlgrD0DayA78Ji7yLA4Q5/rzE03jrO8l902rG1LUmj1Q+R MtPKXepibVl+AjJGYHGiV6UlqerdaQZxyHN7n2MwXCPvEFeSg5wUL/KUWoRZkvMtdj5/F/NT 6eyCbQ7NQtM0dKNKqxTatHwkVpGQOrjN8/FbmKqm2awAA6IyamWYIrrfWUdxiTdB1IenwAd5 3bVfTQ5U22nomnZCDV1U07maUr2/OBjgHK9VE49iQ+QJQU10bu+/RocnrqAQvkaxL8NpQ8gr S91FRCzxYSSQ5CLoBMkd6FBa/s85k1G3CTXrUY1apenNuVpgkMUWwVxpULnkRttXMEI28Mjt m8rwRBaKKKVyxVPbXnQiZv5IKHWJ3Pa/RCicOjYwAeN/syR//Ik6O45sEnkpAGkDAIH+m92m 41c336d4L3jChYSS5XpdmEY1jM8oLffYyIn4JjT22EqOq6x5GyRk+k1Dfcon07zN+xUN7mJQ Vea+6wyAsGvLLdvgF21dlcfO/gU8qcoPsSgfv/A2aixPe8mkij1xX9f7tVb1USBvzF5VvaOx 4wMlviU2wqBfx76kFe7tdjTvq9lTncVGG++wjLjH4lfeut5eoNYQXy2LZiPz85lz4XoR2Ye8 VeiA10c38r8cBaXblrV1AtM1V4QuXigliqziTtyljAitK2E2yLShe/lcUlPIXZFEVFrlkykO o2ol5YaUUyvOhAujweg7F3myrJzgo1adjCWbWIWOi/8IidlT7e6saeEb4hX8pQ0vC5LUeO6J 1eHVrr6pBhc2CTmd4dH7BY8cTzi+pDwnhghzXmYMG42t33BP8d52RbY4tXYA/9XxDsPAidi2 3HRARCnMt+l8M/x9d+Lu/2iV2+nSpxYcDX6hYKGuiyh4GR2ABq51/mtk9zjGAI+3Gf1zd5vH SnPqR/9ZMHs2cHYeapuckxpAnfV7dZ6AIZmtqwfpbpW3n4fh56P+mEAn3u1OtJemOr/YHcLW T8X0ovN+gG2vS8rZnmNxo//SjCc2p49P5/jOjxQgHhmqZkQU/TxjvQMhyZ+r1umoBiEZPF8m mxY0v4y8DsBhPlPvgMxzyKbC7RUHE9CPCWqmQ7birL25KhRemurdqC9kURkmtX0RriOpwBac H//Zpc4Gjd06cp+OxTL1njy4ZvjY97ecZQYsRjewHKix6BFbYk8kPYHn38tMG74vHsN4ugnj QZpxbWdk6msbWJr+aOyGBlDMTPpIcgU/3u+6MQW1tbT1IepEJJ7HzwNV5a9VvOkHgUZsvH/P hqPGjkxwpuCMYLWBhTXqEJvrnaUVouuK2nSP34Bi9NrWBiaIkVbxgESRjQz2JAjREimw8noc UEx4T50hBawoxdJy+RAPh/jUn3YvAOvZTY/Dp+ZKRtd9AZZ4EnJd8eZ66p/EjpZ8ZuosAGWY jDDIV0QUidTABfCXgq4W9vmrdDbu/CVHO+/M+fDbf2VpOpSWu3JjZOj3416/iqdY8CGP31sF fo+iS8hFThyH8XUnSlKSjRCy3qLNpbE4k3moWsu9JvslZajEBji7oaOFbZIZNBm+hTtxLyGK /bVnyFhbzBRypILw3bMjrkZxl8bzS90JFzPWfwNszDASKXIl+pZFRkePml6OM5J6Yo12BVNI 8nDjtT617U+ifgwClxfUkfmlN3vbssPaTLYVhuPFAOQObKKKCeeicj7ZKK6YbRWkOVOsAW0v jmaGAnkODGCnCPuTBehLadHiyTRb3k88MmtNx1qD2bkVtfvbBa2ZcR2gTMByroxnnrWNGQYP Gs0YwZXo7aX9y8dnuRnFjkL8C9+Nefd0XX8jaGQOtMMvPBsGCgxi+9K/CFw1e5O9C8dDP1tx HmO9pg/+Rf+1LHIk2cvUQIS+GoTwtvT4gM6f/2er8clOz6M/QpRvzjKTU1S/509TIWo4v0Yy 8CTxv+pbm4aqZSMu5NbXpacKdrbYid7d0OxQ3iMSlNCFGHOVymXhlQBwqjKqjvJ8d5i7MCrw cVGS6cFBgY8TqpIUx08TtJeeM8lDHR4wdv5xIYJ/STs9hCJHZcD58mVWK7KWqe9b2rIxbhcO UlSyOuhf91Kb9/1hxQ5OAkixNyYSQ2NBLUv6mVgdlFm+kwVqSonFzRh1R69MVGmuCdLR6zzw 0d+ixMgM74krG6+ug5udFSW/HBinhFpwYe3xm3LOHv4KKP6NW1PIxL9rFN5cpbyQgIuKBa3g VQhLzDcAbRYk7pnc2lvzg7ao5pGX/BGH+VIZxoZxPffYPtNsxwUsiK82UpO/vfIE7NEvS5zK NuAiiwF3AhuKtkoOabXOaxFiEBKgb6DtTOp0eZ3xxICI0EK8yWZfytt2gRAOrQ9JiWu9/Bh8 kTew30aIDdKDaBx5KswrQs0IKyYwjjl0qJfJ0z5LOGZI66D+iDBmcOOXlIsxxYImk1Crt0Um Y8od0uZUVxqzaPES0xPbJKdb1sPNIwLriOAGETG+f/Ayp90IYinQ+XhTOvV8b0RnlrhBwExW YIF8sUGGJColkDeN8buarAfmnBPrEzmIkuICPNRdVeFijAC9ou2wJp226FUIC0dG2JlNSK45 72RoQkvgfGZW8wxbGtcVYwBfCFTOoXyi2tCsnJMASPimPoe0xSH5iTgqz74KhDZNoMmSNLKI BRmBZex5Ck19LWwhRjP6JLCKmrmNNNk/NjS9ecdoJXBAPRRB+oY0Q+Ui8xTQHqkVHTKGNi+K s3raoUiWtfzD26zTl21jz9mB9e0JtumKbKExB35XYsB+pfOxygtbIXuc1NWUwc1vewI47hwI BEOc4ZuKwC9rBwwbuS+OFvKjo3oEjzrcX0OCKACheSiO+4Ll2x1NrD8kD14Cchkqov/uU8VG MNX1FeHna7lP88GFnGuUn1FJ1eS/2xgzzInbqBqhb5hiBLQ7QtBaXbSLLcvMCoc+IhjYDHaa XRuVjhhHwPa0dWFukj0mOlNtypFwYQO2LUc4iGn583RPGr0Cv7s9cWw0WJobMB48fd4adWxe 5Lf5p2CxmeNHt6M40WESHDoTfMCw4oJeXsKTqUQwjN1YZRe69gGtBNUNI92JqQRWvMl/un4M GM9XyBOlXRLXNvYhG5Qxbrlk7rCyEXKecx7YkVd6cdM3oNGASAuOntM9uj+Dc2TnmuAAADjw S81xCEVvUcss9E1eeropo3VUJVL1jha5epuVTfGHYVp8F29TXyKhV//S7OqlOn7hGq6I9rl1 MUbQhlnDU9Sxu0QkU0tKbptLLIXsJKMuTiNJxqSVIfF4e26JENW0enzWHzTSo3DsGv3SCoH/ nMIA4RIzSOHfak=
  • Ironport-sdr: 66ffe1af_TCZehO/uLBMiAF0WwicotOeEm+lrHz5QTXKPPpi2enB6P0C wxw8Ccc2VVFC4XYjS/Aiv3SXqnXVfs8+O6TBq2w==
  • Msip_labels:

Nicolas “pain au chocolat” Tabareau,

[ERRATA]
https://github.com/1337777/cartier/blob/master/cartierSolution16.lp

En effet, merci de ton aide pour l’errata, mais conformément à l’article 6 de
la loi 2004-575, j’ai un droit de réponse à ton désaveu public… Sonya Massey
would say “I rebuke you too”, lol #MeToo

-----

Review of Max Zeuner defending “Constructive Algebraic Geometry”.

MAX [1] shows an equivalence between functorial schemes X and
locally-ringed-lattice schemes Y, approximately:

LRDL^op( X ⇒ Spec , Y ) ≅ ( X ⇒ LRDL^op( Spec( – ), Y ) )

Where ( X ⇒ X' ) ∶= Fun( CommRing , Set )( X , X' ) are abbreviations in the
category of functors from commutative rings to sets, where LRDL^op is the
opposite of the category of “locally” ringed distributive lattices, where
Spec: Fun( CommRing^op, LRDL^op ) is the functor sending a commutative ring
to (the underlying set of) its Zarisky lattice, and where “locally” for a
lattice Y with sheaf of rings O_Y means the existence of an operation

D: (u : Y) → O_Y (u) → u↓Y

where D_u(f) is intended to be the open in the slice lattice under u where
the function f: O_Y (u) is invertible.

… But this won’t work; I judge Max’s defense as a “thèse à crédit”.

A prerequisite is a computational logic (type theory) for categories,
presheaves, sites and locally ringed sites. This requirement is especially
manifest for the etale topology where the “objects” of the site are etale
morphisms (adjoint pairs of cocontinuous/continuous functors between sites).
Note that the existing attempts at “2-dimensional type theory” as in Marcelo
Fiore [2] have a flaw in that they try to implement the interchange law
directly (α ∘_0 β) ∘_1 (γ ∘_0 δ) = (α ∘_1 γ) ∘_0 (β ∘_1 δ) when in reality
it hides subtle Yoneda-actions related to the fact that the profunctor
C[F-,_] is a distinct computer type than the hom-profunctor C[-,_] of the
category C applied to outer objects of the form F- ...

A draft solution has been implemented in

https://github.com/1337777/cartier/blob/master/cartierSolution16.lp

as a natural transformation from the structure sheaf to the sieves-classifier
(“subobject classifier” for the small topos of the scheme Y)

D: O_Y → Ω

where D_u(f) is intended to be the SIEVE in Ω(u) under u of all opens where
the function f: O_Y (u) is invertible. This requires the presence of a
classifier/universe Ω for sieves, but because of Kosta Dosen
cut-elimination-in-categories techniques, it is not necessary to work
“internally” as in Thierry Coquand [3] to get a logic which computes. Now a
sieve S under the object U can be realized as a (“dependent”) profunctor in
groupoids over the category of elements of U; that is the sieves need not be
(-1)-truncated subobjects as in Nicolas Tabareau [4, definition 5.5], because
checking instead that the cohomology differential is 0 will be an alternative
way to check for compatibility of a family of sections of the sheaf
(alternative to “internally” ensuring this compatibility)... Moreover, this
profunctor framework will allow a hybrid definition of the site and
functor-of-points approaches to schemes. But all this computational logic
foundations are still far from your typical birational algebraic geometry
conference [5], which usually start with blowing up schemes (projective Proj
bundles) and doing cases analyses with Cartier divisors...

It is a strange coincidence that the formula D: O_Y→Ω resembles the formula
d: O_Y→Ω for Kahler differentials, but the open problem of discovering a
(graded) differential linear logic formulation for the algebraic-geometry’s
cohomology differentials will be investigated instead in an upcoming review
via the profunctorial semantics of linear logic in the context of sieves as
profunctors… It will also be reviewed how outrageous is Ehrhard’s [6, section
3.1.1, page 44] definition of the composition of polynomials by the use of
differentials instead of by elementary concepts,

g ∘ f = Σ_(i: 0..n) (1/i!) g⋅d’^i⋅f^(⊗i)⋅c^i

and how this motivates the search of a hybrid framework⋅ combining polynomial
functors (good algebra) “depending” on analytic functors (good logic) …

[1] Max Zeuner “Univalent Foundations of Constructive Algebraic Geometry”
(defending Oct 4th 2024)
[2] Marcelo Fiore “A type theory for cartesian closed bicategories”
[3] Thierry Coquand “A foundation for synthetic algebraic geometry”
[4] Nicolas Tabareau “Lawvere-Tierney sheafification in homotopy type theory”
[5] SCMS 上海数学中心 “Workshop on Birational Geometry - September 2024”
[6] Thomas Ehrhard “An introduction to differential linear logic: proof-nets,
models and antiderivatives”

-----

A copy of this review is at https://dailyReviews.link (by re365.net open
source Microsoft 365 app), the tiktok-style calendar overlay for all your
research communications!




Archive powered by MHonArc 2.6.19+.

Top of Page