Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Proving the pairing axiom

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Proving the pairing axiom


Chronological Thread 
  • From: Jason Hu <fdhzs2010 AT hotmail.com>
  • To: "coq-club AT inria.fr" <coq-club AT inria.fr>
  • Subject: Re: [Coq-Club] Proving the pairing axiom
  • Date: Sun, 29 Dec 2024 22:17:13 +0000
  • Accept-language: en-US, en-CA
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=none; dmarc=none; dkim=none; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector10001; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=zOhnCU6eZSBhCrFffGN0g3VsLr44LyfwtgI7RbWrWTI=; b=ZmaGBKORmNIS8A3VbxmqkEtXGTrX9+MwsFXAkuJWBJFgq1XNFwHGsxJYyV3ra5+syFeyJzgx3kUSZy9/qEUp+T/rQsVHWFwocEAJvL/bQaDrF5EbN+hNDn1eDlHPJytiasF674mdEEe8Yb9BnLERUSS0UH8mPCu/m9R6kmYtoANM2+Qog+uO1OxnERhXywDSxJjoI3WnNOrF3PImyXSc7D4wrTgaPHR6vusnDXhdPTMwmT+TbHqMeZquWf6PPBqKaPPLLANepCWj/m80OHFnR3dyS3RgRHb0SZ2Zrs9MH0x9gWoj+fg+hiG3/NMpBuz4r31EdNF3FcqLWmSu1Lj43Q==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector10001; d=microsoft.com; cv=none; b=UmtFM8WnccfId7Gyk739s837v5GdXPJS9ryzebd4h1EXKbeOvoqhaOMtqjtiV91hsSPN6Slliw7UMPgQF7X2CLxLld6e1xwHDSr16EWVE2kXR4SOGVZVO0z0PjvqOeaOqWOKSaRfFqhVHW6XJdVwyCgcc8t6IGv1ZlisAvrXCKaaLg8TgYm3YZ7npzegF74+kqjo/AQOi+VclmuhFOch96QeJXgkHMlxUYvbO1xhjHOGzioUE/Jc2TYwvUfrgKaVpRSsj37FcXX6VCZ42ak/bLGfGZli76nSqpbgTPFHxEN7gcrCMGfN2eyyEpZbPcvzOxQPQh0FeLt2n28fiwjlzg==
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=fdhzs2010 AT hotmail.com; spf=Pass smtp.mailfrom=fdhzs2010 AT hotmail.com; spf=Pass smtp.helo=postmaster AT NAM04-MW2-obe.outbound.protection.outlook.com
  • Ironport-data: A9a23:tf8mD65XH8uscvaOwYrGzgxRtA3MchMFZxGqfqrLsTDasY5as4F+v jRNDGGAbqzbZjH1edl3PIni/UgFvpTdn95mHQY9+ytgZn8b8sCt6faxfh6hZXvKRiHgZBs6t JtGMoGowOQcFCK0SsKFa+C5xZVE/fjUAOC6UoYoAwgpLSd8UiAtlBl/rOAwh49skLCRDhiE0 T/Ii5S31GSNhXgtaAr414rZ8Ekz5a6o6WtC1rADTakjUGH2xyF94K03fvnZw0vQGuF8AuO8T uDf+7C1lkuxE8AFV7tJOp6iGqE7aua60Tqm0hK6aID+6vR2nRHe545gXBYqhei7vB3S9zx54 I0lWZVd0m7FNIWU8AgWe0Ew/y2TocSqUVIISJSymZX78qHIT5fj68hJMVkNEKoCw8ByLj9K5 flHMm8uTA/W0opawJrjIgVtruIKCZG3eaYg4DRnxzyfCus6S5feRamM/cVfwDo7msFJG7DZe tYdbj1sKh/HZnWjOH9LUNRvxqH02D+vK1W0q3rNzUYzy2bfzB5qiuC0aPLVfcCPTMRR2E2fo woq+kyjWklLa4DEl2btHnSEt8OSoiLgAp4pBpK76MdNmnOIyEsoMUhDPbe8iaLi0BLhMz5FE GQf/TNrpqwv/mSwX9zlVlu5pmSFt1gSQbJt//YS7QiMzu/R/FyfD21cEjlFa9p87J9uAzs3y lWOgtXlQyR1t6GYQm6c8bHSqi6uPS8SLikJYipsoRY5D8fLnaYOliniacxaNqua0NnlHG7qn BOos31r71kMtvIj26K+9FHBpjujoJnVUwI4jjk7uEr1sGuVg6b1N+SVBUjn0BpWEGqOorC8U JUsnsGf6KULEsuLnSnVHOIJH7fzv6bddjrBnVRoAp8tsSy3/GKudpxR5zc4I1p1NsEDenniZ 0q7VeJtCH17YirCgUxfOtjZ5yEWIU7IToqNuhf8NYQmX3SJXFXblByCnGbJt4wXrGAikLskJ bCQetu2AHARBMxPlWXtGrtEieBwl39mnQs/oKwXKTz3jtJyg1bFGN843KemMLFpvctoXS2Jr YkCb5fUl32zrsWiPnGKqNR7wa82wYgTXsus95M/mh+rJwttAmY6DPHNibgmYZQNokimvragw 51JYWcBkACXrSSecW2iMyk/AJuxB8oXhSxgZ0QEYw33s0XPlK7zts/zgbNrJ+F/rISODJdcE 5E4Ril3Kq4RF2SYompEM8CVQU4LXE3DuD9i9hGNOFAXF6OMjSSQkjM9VlK3qXlcPTn9rsYkv byr2yXSRJdJFUwoD9/bZLjrhxm9tGQU0rA6FUbZAMhhSGO1+qhTKgv1kqAWJeMIIk793Te07 VudLioZgujvmLUL1uf1q5qKlbr0LNsmLHFmRzHayZ2UKRjl+nGSxN4cceSQIhHYemDG2ISjQ uR3yPunCuE2o1JRl49aDbxQ7Lkf4uH3rORw1TVUH3TsbnWqBIh/I3KA49J9i61VypJduiq0Q kip+NJKHZmoYeTOD0w0CDc+S+aIxMEvhTjZ6MoqLHXA5CNY+KSNVWNQNUKujBNxAaRUMoQ35 /UIo+8TthKCjyQ1Pua8jix783qGKloCWf4FsrAYGIratRo5+GpdYJDzCj7E37/XUo9ianIVG z6zgLbOo59+xUCYKno6KiXr7Npn3J8LvEhH8U8GK1G3geH6v/4Q3iBK0DEJXw9QnwRm0eVyB zBRDHdLB56yphVmuMsSeFqXOVBlJAaY8UnP2Vc2hDXnb023ZFfsckw5G8iwpX48zUwNXwJm7 Im5yXnkWwnEZMve/DU/cm87pu3BTe5ezBzjmsemI8erObwWWCbZvKS/QVVZqincXN09tHfGr 7JU4dRbNLLwMH9IkZIdU4ClhKk0TUHdKENSX/s75744RzDAWTCt2AqhL1K6VdNNKsfrr265K Z1KDeBeWyuu0B2hqmggOpcNBLtvjdgV68EnaJqyAUIn756OsWBPor/L0yr12V8QXNRllPgiJ rPrdz6tFnKagV1WkTTvqPZoF3WZY94WQh/Vx8Gwrfs0EqwcvNFWcU0d1qW+u1OXOlBF+zOWp AbyWL/E/dd9yIhDn5reLYsbPl+acejMbeWv9By/l/9sbtmVaMfHiF4zm2ndZg9TOeMcZsRzm bGzq+XI5ULivostcmXnipKERrho58KzYbJtCfjJDkJmxAmMZMy9xCE42TGcCYdIm9Zj9MWYV 1OGSM+vR+U0BfZZ5lNoMhZ7LThMKp7ZTKnaoQGFk8+tETkYiAzOE8Om/yTmbEZdbS45BKf9A Q7V5der5s5Ug91MDSAbGsA8UoNZIUDia4QiZdbepTmVNUj2o1Kg65/Jtwss1iHPMVaASP3F2 JPiQgOkUgafo4TK8Y19n6ltmCYIHVBvo+UUVWAMye5c0jyVIjYPErUADM8gFJpRrB3X6Lj5Q zPoN04JFiT3WGV/QyXWudjMcF+WOb0TB43fODcswkKzbhW2DqOmBJ9K1H9pw1VySwvZ4NCXE /Ms0VyuAUHp2bBsf/gZ2dKji+Q+xv/6+GMByXqgr+PMWSQhEZc4/10/OjFSVB73MdDHz2TKA mkXeVpqYm+GTWzJLMIxXEINRT84umrjwQx9OG3LiJzatp6AxeJN9OznNquhmvcfZcANP/gVS WmxW2KJ5HuM12cOvbcy/egkmrJwFenBC/3SwHUPnuHOt/3YBqUb08I+ce4naugHoFIaNmyH0 z6m7j45GViPL11X1PuO0wIV9pltU3UKSTbUkAr4ojyAmhs8pzQcUwb/1xr1cPkctIC613i0g h9LBKpSn7FSnDvjuTx3t/BdrVuCaS3UPWeRSTgmF/sejT/1IFKw19ldP4US19VN9XRFwsNfc 6P5PxDRPm64dnvn4j0IV+v1rlSqQ3nt1+jDZ3LUEMpXK+aN
  • Ironport-hdrordr: A9a23:fP7sIqP+vYQMtMBcTxX155DYdb4zR+YMi2TDiHoddfUFSKalfp 6V98jzjSWE8Ar5K0tQ4uxoWZPwNk80kKQY3WB/B8bHYOCLggqVxcRZnPLfKl7balvDH4xmpM BdmsFFYbWeY2SSz/yKhjVQeOxQo+VvhZrY4Ns2uE0dLz2CBZsB0y5JTiKgVmFmTghPApQ0UL CG4NBcmjamcXMLKuymG3gsRYH41pX2vaOjRSRDKw8s6QGIgz/twqX9CQKk0hAXVC4K6as+8F LCjxfy6syYwrqGI17npiLuB9k/oqqq9jJwPr3CtiEnEESjtu+cXvUsZ1Xb1ApF4d1Hpmxa0O Uk6C1QRfibo0mhA11d5yGdkjUJ3FsVmgPfIHKj8AjeSPbCNUAHItsEgZgcfgrS6kImst052K VX33iBv54SCR/bhizy69XBShkvzyOP0A4fuP9Wi2YaXZoVabdXo4Ba9ERJEI0YFCa/7Iw8Cu FhAMzV+f4Te1KHaHLSuHVp3bWXLwEO9jzveDl8hiW46UknoJki9Tpn+CU2pAZwyK4A
  • Ironport-phdr: A9a23:ZNZh6hdaHSp/gwizuomdKbMqlGM+FNbLVj580XLHo4xHfqnrxZn+J kuXvawr0ASQG9yBt7kd1bKempujcFJDyK7CikxKSIZLWR4BhJdetC0bK+nBN3fGKuX3ZTcxB sVIWQwt1Xi6NU9IBJS2PAWK8TW94jEIBxrwKxd+KPjrFY7OlcS30P2594HObwlSizewb65+I A+roQnPucQajpZuJ6ctxhDUvnZGZuNayH9nKl6Ugxvy/MC88oJ9/S9Nofwh7clAUav7f6Q8U 7NVCSktPn426sP2qxTNVBOD6XQAXGoYlBpIGBXF4wrhXpjtqCv6t/Fy1zecMMbrUL07QzWi7 6NsSB/1lCcKMiMy/W/LhsBsiq9QvRWuqQFiw47PeIGaKuZxfr/Tc9MdQGpORMdRVypcCY+4Y IYCC+8NMOBFpIf/ulQOtwOzCwmyCu3y1j9GiHz43aM43Os9Hg7LxxYvE84SvHnOsNn5KKgcX Oaox6fI1zXDaPZW1C/55ofSaRAhpveMVq9yf8rM1EIiEA3FgUiQqY3kJDOZyPgBv3WH4+d7V eKvjHInqwRrrTiuwscgkJXGhoUQyl3d8yhy3Yk6K8GiRkFhfd6kDIVftzucN4ZuXM8uXmFlt Domx7AItpO2YiwHxIg5yxPBd/GLb4eG7BLjWuuTPTt1hHJrdr2xihuv8UWs1PHwWtSq3VtXs iZIjN/BvW0D2RzU78iIUPp9/kG51DaA1gDT9uFEIV0vmqbBKp4hxbg9nYcQv0TbBiL7l1n6g LWSe0k64OSl5OXqbq/lq5OAL4N4lADzPrggl8G6HOg0LhMBUmme9OumyLHu80j0TbVLg/Eql 6TUtY3WKMQdq6WkHQJV1psj6w2jDzi4ytQWgHgHLVNbdx+fk4TkPUzFLuriAvelmVuslS9mx /DYMb3lBZXANmDNnavmc7ph5ENQ0Q09wtBB655NDbEOO+z8VlX2tNzFEh82KAu0w/vhCNpgz I8eQXiPAqiFMKzMrVCI+uMvI+6KZIMPvzb9NuQl5/rpjX8+ml8RZ7Wm3ZwSaHygH/RmJVuWY Wb0j9oODWsGpA4zQPLwhFCNUDNffXW/U74k6jE+Eo2mDIPDRo63gLyG2Se2BpNWaX1GClGNC nfkaZmIV+oQZC+JIs9hlSAEVb27RI8g0RGirhP1y71iLubM/C0Xrors1MJp6O3LiREy6Tt0A tyA322VVWF7gnsIRyMq3KB4uUFy1lCD0bFhj/NEEdxT+uhGXxwhNZ/cyux6E8r9VhjAftePU lamQ8+pDSs/TtIrkJcyZBM3ENK7yxvHwiCCArkPlrXNCoZ+uvbX2GG0LMJgwV7H0rMghh8oW J0cG3ehg/td/hPUAcbpjg3NmaqqZ79GhHeV3GeE0W+HvUUeWwl1B/aWFUsDb1fb+IyqrnjJS KWjXOh2WuMg4cuLK68QL8bskU0DXvDoftLXf2O2nW60QxeO3LKFKoTwKC0GxCuILk8CnkgI+ GqecxAkD3Kvr2LMF2Y2TArHY0Tw9OB/rDWwSUpnhxqSYRhZ3qGusgUQmeTaTvoS2rwevyJ0p Tl0Dk3nh4uOI9qHuw9ofaEaatQ4sx9czWyMjwVmJdS7Krx6wF4TdwMip0T1yxB+EZlNi+AMh VZykE9XFvjd11lMMTSFwZr3J7vbbHHo+wyiYLLX3VeY18uK/qAI67IzrFCLUBiBME0k/j0n1 tBU1yHZ/ZDWFE8IVpm3VE8r9h98rrWcYy8n5oqS22c+ea+z+iTP3d4kHo5Hgl6pYstfPaWYF QTzD9xSBs6gL/YvkkSoaRRMNf5b9ao9NcerP/Wc36vjMOFllTOgxWNJheI1mkyA9zhnELaRh 74FxO2d1wqDETz7iRbps8z6n5xFeSBHBnC2mmDvAI9cYLE3fJ5eVT/ocpfxmos418a+PhwQv ESuDF4HxsKzLB+bblinmBZVyVxSu3us3y2x0z1zlTgt6KuZxi3Hher4J39lciZGQndviVD0L M26ldcfCQKmYwg7j0H9vB7Sx69Hoa1+Ky/YRkICLE2UZylyF7C9sLaPeZsF5p8ooz4NCL3kS VCdVrv0oh9c2CTmVTg7pnhzZ3ShvZP3mAZ/gWSWISNorXbXTsp3wA/W+N3WQfM5MiMufCBjk nGXA1G9O4Ps5tCIj9LZtev4UWu9V5pVeC2tzIWatSL963c4SRG4mvmynJXgH21YmWf129l4T n+Q9U7UYo730q27NaRseUwgCFLn6sV8E51zicNs3NdBgz5G2NPFpTIOii/rPM9e2L7iYXZoJ 3ZD2NPT7AX/mQViIn+P24PlRyCYy8placO9ZzBe0SY84sZWTaaMueAc23ov5Abm61KJMp0f1 n8HxPAj6WAXmbQMsQsplGCGB6wKWFNfNmrqngiJ6Na3qONWYnyueP6+zhkb/5jpAbecrwVbQ Hu8dI0lGHo64Ml/IkmWiCSrwoHjZNzZbNZVvRqR2USl7aAdONcqm/wGiDAyc2zxvW8+kbZi1 TRu2o2/tYmDbW5q+ejqZ3wQfi2wbMQV9Db3iK9YlcvDxIGjEKJqHTATVYfpR/alQ3oC8O7qP AGUHHggu2+WTPDBSBSH5h4s/BetW9i7cmuaL34DwZB+SQmBcQZB1RsMUmxyn4ZlRF3wgpW5K wEhoGhWvwGwqwMQmLswa1+jDSGH4l/vM2hRKtDXLQIKvF0aoRaPd5TYtqUqQWlZ5sHz9VTRb DDEIV4QSzlOABfMBki/bOD2uZ+crK7BXrr4d7yUOtDs4aRfT6vanMrzlNc5uWnRcJ3IZCUqD uVniBMbATYlRIKEwHNSE2tNy2rMd5DJ/h7ko38u95nt/qizAFC9otffbtkaedR3pULsiP/aZ bfJ3XR3dW4DhMFLmS6AyaBBjgQb03g8LmD0Q7pc7XWfHPqIwv0FSENDDkE7fMpQsfBm11EUa 5eC04H7iuYj3PVtUw8XBxu8w4mofZJYeWjlbQGeXR/ZOujefm/Fm5mvM/H7FOcYyexQs1fYV S+zK0b4JXzDkjDoU0rqKuRQlGSBOxcYvoihcxFrAGylTdT8axT9PsUlxTExxLQ1gDvNOwt+e XBkdFhRq7SL8S5CqtNWPjQdq19ad6yDkSvf6PTEIJELt/ctGj5zi+9R/HU9zf1S8T1AQ/t23 iDVq7sM6xmqn/KOxTxuTBdV4moTwtPR+xk8f/WBvpBbEW7J5hcM8XmdB1wRqt1pB8eu86Fcx 97Tlb7ifTdP99WHmKlUT8PQKc+BLD8gKU+1QHiFVk1ZE3j7bTK65QQVivyZ+3yLo4Jvr5Htn MBLUbpHTBkvEfhcDE15HdsEKZMxXzU+kLfdgtRbgBj25BTXWsheuYjKE/yIBvC6YjiVjatfP UNRmZv4KpgWP4z/nUdlbxMp+eaCU1qVRt1LriB7O0Usp15R9XFlUmAp82TMT1vxpVosT7uzl BNwjRZia+Mw8juq+00wOlfBuCo3lg82hMnhhjeSNjX2Ke3jOOMeQzqxvE83PJThRg9zZgDnh k1oOgDPQLdJhqdhf2Rm20fM/IFCEvlGQehYcQcdkLuJMu4w3w0W+UDFjQdXoPHIApx4mE42f I6w+jhejhl7Yod9JLSMdvYRiAkKwPrI5mjxi6gw2FNMex5LqTvNPnZO4AtRaNxEb2Kp5rA+t FbEwmMbPjBKD71z/7pr7h9vZr7Glnq6leYFcgfoaaSeN//L5jKGzJbTBAt2jgRRyCwntfB3y ZtxKhLIERxwiuPXT1NQaoLDMV8HNcMKrSqKJH/cv7mVmcAneNntc4KgBe6W6vROixr9Tl9wR tYCspxaTMvrjBCQLN+5fuQMkUx/vV2ydlvZVK8bKErTyGVV5Jzmqf0/lYhFeGNHCD0kY3zuv +TZ+ldx0vHbBI9kMDBHB8MFLixkAsTiwnwA5i0SAmXvibAXkFDavW27+36YSTD4a5ALjBi8Z RRwDdi3/XM09K3k0DY/E734DkSiaZFHhYWK7ukX4ZGaF/lTUL9x9V/GnJVVTGCrVGiJFsOpI 5/3aM8natmmUx5St3S/jC4wRsb1et2qK/rQ6Tw=
  • Ironport-sdr: 6771ca6e_yoEE2FY7vMChgtJc0AJuAvIrDaOc9AIxuwMJ3vdxiBEdnUZ BNC7AM6asmku3vtwQLCq3wWq0w71zI0YtWO+ecg==
  • Msip_labels:

That some Prop equals to True is a bit bizarre. I would imagine directing using the Prop itself would simplify some proofs. Also, using equality between Prop's sounds a bit inconvenient, if propositional extensionality is not assumed. I think the targeted formalization is just too set theoretic. 

Thanks,
Jason Hu
https://hustmphrrr.github.io/


From: coq-club-request AT inria.fr <coq-club-request AT inria.fr> on behalf of mukesh tiwari <mukeshtiwari.iiitm AT gmail.com>
Sent: Saturday, December 28, 2024 11:17 AM
To: coq-club AT inria.fr <coq-club AT inria.fr>
Subject: Re: [Coq-Club] Proving the pairing axiom
 
Hi Richard,

Below is the code. I have slightly modified your code because I was not able to run it locally. To prove pairN, I have used two axioms *prop_degeneracy* (classical logic) and *functional_extentionality*. My intuition is that it cannot be proven in Coq because of this goal (but I am not a type theorist so I could be wrong).  

 object : Type
 eq_dec : ∀ x y : object, {x = y} + {x ≠ y}
 x : object
 f : object → Prop
 y : object
 Hb : x ≠ y
 Ha : (False = True) = (f y = True)
 ============================
  False = f y


From Coq Require Import Utf8.
Require Import Coq.Logic.FunctionalExtensionality.

Section Richard.
  Variable (object : Type).
  Variable (eq_dec : forall (x y : object), {x = y} + {x <> y}).

  Inductive N : Type :=
  | Caract : (object -> Prop) -> N.

  Definition caract (s : N) (a : object) : Prop :=
    let (f) := s in f a.

  Definition In (s : N) (a : object) : Prop :=
    caract s a = True.

  Definition incl (s1 s2 : N) :=
    forall a : object, In s1 a -> In s2 a.

  Definition set_eq (s1 s2 : N) :=
    forall a : object, In s1 a = In s2 a.

  Definition L (a : object) : N :=
    Caract
      (fun a' : object =>
         match eq_dec a a' with
         | left _ => True
         | right _ => False
         end).

  Axiom prop_degeneracy : forall (P : Prop),
      P = True \/ P = False.


  Lemma false_true_equality : (False = True) = (True = True) -> False.
  Proof.
    intros Ha.
    assert (Hb : True = True) by reflexivity.
    rewrite <- Ha in Hb.
    rewrite Hb.
    exact I.
  Qed.
  

  Lemma pairN : forall (x : object) (A : N),  L x = A <-> set_eq (L x) A.
  Proof.
    intros x A.
    split.
    -
      intro Ha; subst.
      unfold set_eq; intro a.
      apply eq_refl.
    -
      intro Ha.
      unfold set_eq, In in Ha.
      destruct A as [f]. cbn in Ha.
      unfold L.
      f_equal.
      eapply functional_extensionality; intro y.
      specialize (Ha y).
      destruct (eq_dec x y) as [Hb | Hb].
      +
        eapply eq_sym.
        rewrite <-Ha.
        exact eq_refl.
      +
        (* I am committing a sin :-) *)
        destruct (prop_degeneracy (f y)) as [Hc | Hc].
        ++
          rewrite Hc in Ha.
          eapply false_true_equality in Ha.
          inversion Ha.
        ++
          rewrite Hc.
          exact eq_refl.
  Qed.

End Richard.



Best, 
Mukesh 

On 28 Dec 2024, at 14:41, richard <richard.dapoigny AT univ-smb.fr> wrote:

Dear Coq user,

I am working on sets with characteristic functions and a datatype called object for wich equality is decidable.

Singletons called ι are also defined in this context. An excerpt of the code is given below.

Definition object: Type := t.

Definition eqobject_dec := eq_dec.

Inductive N : Type :=
    | Caract  : (object -> Prop) -> N.

Definition caract (s :N)(a:object) : Prop := let (f) := s in f a.
Definition In (s :N)(a:object) : Prop := caract s a = True.
Definition incl (s1 s2 :N) := forall a:object, In s1 a -> In s2 a.
Definition set_eq (s1 s2 :N) := forall a:object, In s1 a = In s2 a.

Definition ι (a:object) :=
  Caract
    (fun a':object =>
       match eqobject_dec a a' with
       | left h => True
       | right h => False
       end).

My question is the following : is there a possibility to prove the pairing axiom with these assumptions, i.e.  to prove that 

Lemma pairN : forall (x:object)(A:N), set_eq (ι x) A <-> ι x = A.

In addition we assume classical logic.

Thanks in advance,

Richard





Archive powered by MHonArc 2.6.19+.

Top of Page