Accéder au contenu.
Menu Sympa

starpu-devel - [Starpu-devel] Starpu Test Results

Objet : Developers list for StarPU

Archives de la liste

[Starpu-devel] Starpu Test Results


Chronologique Discussions 
  • From: Stephen Ray Ownbey <Ownbey@uwyo.edu>
  • To: "starpu-devel@lists.gforge.inria.fr" <starpu-devel@lists.gforge.inria.fr>
  • Subject: [Starpu-devel] Starpu Test Results
  • Date: Thu, 21 Nov 2013 21:04:36 +0000
  • Accept-language: en-US
  • List-archive: <http://lists.gforge.inria.fr/pipermail/starpu-devel>
  • List-id: "Developers list. For discussion of new features, code changes, etc." <starpu-devel.lists.gforge.inria.fr>

The errors are possibly my fault, as I had to modify several of the make files since configure did not correctly incorporate NVidia’s Magma package into the build. I also modified the three files I have attached, so the Cholesky examples would run without generating call magma_init first errors

 

 

Regards,

Stephen R. Ownbey

Engineering 2038

(307) 766-6582

ownbey@uwyo.edu

 

Attachment: test-suite.log
Description: test-suite.log

/* StarPU --- Runtime system for heterogeneous multicore architectures.
*
* Copyright (C) 2010-2012 Université de Bordeaux 1
* Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche
Scientifique
*
* StarPU is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* StarPU is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU Lesser General Public License in COPYING.LGPL for more details.
*/

#ifndef __STARPU_CUDA_H__
#define __STARPU_CUDA_H__

#include <starpu_config.h>

#if defined STARPU_USE_CUDA && !defined STARPU_DONT_INCLUDE_CUDA_HEADERS
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <cublas.h>

#ifdef __cplusplus
extern "C"
{
#endif

#ifdef STARPU_HAVE_MAGMA
#include <magma.h>
void starpu_magma_report_error(const char *func, const char *file, int line,
magma_err_t status);
#define STARPU_MAGMA_REPORT_ERROR(status) \
starpu_magma_report_error(__starpu_func__, __FILE__, __LINE__, status)
#endif

void starpu_cublas_report_error(const char *func, const char *file, int line,
cublasStatus status);
#define STARPU_CUBLAS_REPORT_ERROR(status) \
starpu_cublas_report_error(__starpu_func__, __FILE__, __LINE__,
status)

void starpu_cuda_report_error(const char *func, const char *file, int line,
cudaError_t status);
#define STARPU_CUDA_REPORT_ERROR(status) \
starpu_cuda_report_error(__starpu_func__, __FILE__, __LINE__, status)

cudaStream_t starpu_cuda_get_local_stream(void);

const struct cudaDeviceProp *starpu_cuda_get_device_properties(unsigned
workerid);

int starpu_cuda_copy_async_sync(void *src_ptr, unsigned src_node, void
*dst_ptr, unsigned dst_node, size_t ssize, cudaStream_t stream, enum
cudaMemcpyKind kind);

void starpu_cuda_set_device(unsigned devid);

#ifdef __cplusplus
}
#endif

#endif /* STARPU_USE_CUDA && !STARPU_DONT_INCLUDE_CUDA_HEADERS */
#endif /* __STARPU_CUDA_H__ */

/* StarPU --- Runtime system for heterogeneous multicore architectures.
*
* Copyright (C) 2009-2013 Université de Bordeaux 1
* Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
* Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche
Scientifique
* Copyright (C) 2011 Télécom-SudParis
*
* StarPU is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* StarPU is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU Lesser General Public License in COPYING.LGPL for more details.
*/

#include <starpu.h>
#include <starpu_cuda.h>
#include <starpu_profiling.h>
#include <common/utils.h>
#include <common/config.h>
#include <core/debug.h>
#include <drivers/driver_common/driver_common.h>
#include "driver_cuda.h"
#include <core/sched_policy.h>
#ifdef HAVE_CUDA_GL_INTEROP_H
#include <cuda_gl_interop.h>
#ifdef STARPU_HAVE_MAGMA
#include <magma.h>
#endif
#endif
#include <datawizard/memory_manager.h>
#include <datawizard/malloc.h>

#ifdef STARPU_SIMGRID
#include <core/simgrid.h>
#endif

/* the number of CUDA devices */
static int ncudagpus;

static size_t global_mem[STARPU_NMAXWORKERS];
#ifdef STARPU_USE_CUDA
static cudaStream_t streams[STARPU_NMAXWORKERS];
static cudaStream_t out_transfer_streams[STARPU_NMAXWORKERS];
static cudaStream_t in_transfer_streams[STARPU_NMAXWORKERS];
static cudaStream_t peer_transfer_streams[STARPU_NMAXWORKERS];
static struct cudaDeviceProp props[STARPU_MAXCUDADEVS];
#endif /* STARPU_USE_CUDA */

void
_starpu_cuda_discover_devices (struct _starpu_machine_config *config)
{
/* Discover the number of CUDA devices. Fill the result in CONFIG. */

#ifdef STARPU_SIMGRID
config->topology.nhwcudagpus = _starpu_simgrid_get_nbhosts("CUDA");
#else
int cnt;
cudaError_t cures;

cures = cudaGetDeviceCount (&cnt);
if (STARPU_UNLIKELY(cures != cudaSuccess))
cnt = 0;
config->topology.nhwcudagpus = cnt;
#endif
}

/* In case we want to cap the amount of memory available on the GPUs by the
* mean of the STARPU_LIMIT_CUDA_MEM, we decrease the value of
* global_mem[devid] which is the value returned by
* _starpu_cuda_get_global_mem_size() to indicate how much memory can
* be allocated on the device
*/
static void _starpu_cuda_limit_gpu_mem_if_needed(unsigned devid)
{
starpu_ssize_t limit;
size_t STARPU_ATTRIBUTE_UNUSED totalGlobalMem = 0;
size_t STARPU_ATTRIBUTE_UNUSED to_waste = 0;
char name[30];

#ifdef STARPU_USE_CUDA
/* Find the size of the memory on the device */
totalGlobalMem = props[devid].totalGlobalMem;
#endif

limit = starpu_get_env_number("STARPU_LIMIT_CUDA_MEM");
if (limit == -1)
{
sprintf(name, "STARPU_LIMIT_CUDA_%u_MEM", devid);
limit = starpu_get_env_number(name);
}
#ifdef STARPU_USE_CUDA
if (limit == -1)
{
/* Use 90% of the available memory by default. */
limit = totalGlobalMem / (1024*1024) * 0.9;
}
#endif

global_mem[devid] = limit * 1024*1024;

#ifdef STARPU_USE_CUDA
/* How much memory to waste ? */
to_waste = totalGlobalMem - global_mem[devid];

props[devid].totalGlobalMem -= to_waste;
#endif /* STARPU_USE_CUDA */

_STARPU_DEBUG("CUDA device %u: Wasting %ld MB / Limit %ld MB / Total
%ld MB / Remains %ld MB\n",
devid, (long) to_waste/(1024*1024), (long) limit,
(long) totalGlobalMem/(1024*1024),
(long) (totalGlobalMem - to_waste)/(1024*1024));
}

#ifdef STARPU_USE_CUDA
cudaStream_t starpu_cuda_get_local_in_transfer_stream(void)
{
int worker = starpu_worker_get_id();

return in_transfer_streams[worker];
}

cudaStream_t starpu_cuda_get_local_out_transfer_stream(void)
{
int worker = starpu_worker_get_id();

return out_transfer_streams[worker];
}

cudaStream_t starpu_cuda_get_local_peer_transfer_stream(void)
{
int worker = starpu_worker_get_id();

return peer_transfer_streams[worker];
}

cudaStream_t starpu_cuda_get_local_stream(void)
{
int worker = starpu_worker_get_id();

return streams[worker];
}

const struct cudaDeviceProp *starpu_cuda_get_device_properties(unsigned
workerid)
{
struct _starpu_machine_config *config = _starpu_get_machine_config();
unsigned devid = config->workers[workerid].devid;
return &props[devid];
}
#endif /* STARPU_USE_CUDA */

void starpu_cuda_set_device(unsigned devid STARPU_ATTRIBUTE_UNUSED)
{
#ifdef STARPU_SIMGRID
STARPU_ABORT();
#else
cudaError_t cures;
struct starpu_conf *conf = _starpu_get_machine_config()->conf;
#if !defined(HAVE_CUDA_MEMCPY_PEER) && defined(HAVE_CUDA_GL_INTEROP_H)
unsigned i;
#endif

#ifdef HAVE_CUDA_MEMCPY_PEER
if (conf->n_cuda_opengl_interoperability)
{
fprintf(stderr, "OpenGL interoperability was requested, but
StarPU was built with multithread GPU control support, please reconfigure
with --disable-cuda-memcpy-peer but that will disable the memcpy-peer
optimizations\n");
STARPU_ABORT();
}
#elif !defined(HAVE_CUDA_GL_INTEROP_H)
if (conf->n_cuda_opengl_interoperability)
{
fprintf(stderr,"OpenGL interoperability was requested, but
cuda_gl_interop.h could not be compiled, please make sure that OpenGL headers
were available before ./configure run.");
STARPU_ABORT();
}
#else
for (i = 0; i < conf->n_cuda_opengl_interoperability; i++)
if (conf->cuda_opengl_interoperability[i] == devid)
{
cures = cudaGLSetGLDevice(devid);
goto done;
}
#endif

cures = cudaSetDevice(devid);

#if !defined(HAVE_CUDA_MEMCPY_PEER) && defined(HAVE_CUDA_GL_INTEROP_H)
done:
#endif
if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);
#endif
}

#ifndef STARPU_SIMGRID
static void init_context(unsigned devid)
{
cudaError_t cures;
int workerid;

/* TODO: cudaSetDeviceFlag(cudaDeviceMapHost) */

starpu_cuda_set_device(devid);

#ifdef HAVE_CUDA_MEMCPY_PEER
if (starpu_get_env_number("STARPU_ENABLE_CUDA_GPU_GPU_DIRECT") != 0)
{
int nworkers = starpu_worker_get_count();
for (workerid = 0; workerid < nworkers; workerid++)
{
struct _starpu_worker *worker =
_starpu_get_worker_struct(workerid);
if (worker->arch == STARPU_CUDA_WORKER &&
worker->devid != devid)
{
int can;
cures = cudaDeviceCanAccessPeer(&can, devid,
worker->devid);
if (!cures && can)
{
cures =
cudaDeviceEnablePeerAccess(worker->devid, 0);
if (!cures)
_STARPU_DEBUG("Enabled
GPU-Direct %d -> %d\n", worker->devid, devid);
}
}
}
}
#endif

/* force CUDA to initialize the context for real */
cures = cudaFree(0);
if (STARPU_UNLIKELY(cures))
{
if (cures == cudaErrorDevicesUnavailable)
{
fprintf(stderr,"All CUDA-capable devices are busy or
unavailable\n");
exit(77);
}
STARPU_CUDA_REPORT_ERROR(cures);
}

cures = cudaGetDeviceProperties(&props[devid], devid);
if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);
#ifdef HAVE_CUDA_MEMCPY_PEER
if (props[devid].computeMode == cudaComputeModeExclusive)
{
fprintf(stderr, "CUDA is in EXCLUSIVE-THREAD mode, but StarPU
was built with multithread GPU control support, please either ask your
administrator to use EXCLUSIVE-PROCESS mode (which should really be fine), or
reconfigure with --disable-cuda-memcpy-peer but that will disable the
memcpy-peer optimizations\n");
STARPU_ABORT();
}
#endif

workerid = starpu_worker_get_id();

cures = cudaStreamCreate(&streams[workerid]);
if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);

cures = cudaStreamCreate(&in_transfer_streams[workerid]);
if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);

cures = cudaStreamCreate(&out_transfer_streams[workerid]);
if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);

cures = cudaStreamCreate(&peer_transfer_streams[workerid]);
if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);
}

static void deinit_context(int workerid)
{
cudaError_t cures;

cudaStreamDestroy(streams[workerid]);
cudaStreamDestroy(in_transfer_streams[workerid]);
cudaStreamDestroy(out_transfer_streams[workerid]);
cudaStreamDestroy(peer_transfer_streams[workerid]);

/* cleanup the runtime API internal stuffs (which CUBLAS is using) */
cures = cudaThreadExit();
if (cures)
STARPU_CUDA_REPORT_ERROR(cures);
}
#endif /* !SIMGRID */

static size_t _starpu_cuda_get_global_mem_size(unsigned devid)
{
return global_mem[devid];
}


/* Return the number of devices usable in the system.
* The value returned cannot be greater than MAXCUDADEVS */

unsigned _starpu_get_cuda_device_count(void)
{
#ifdef STARPU_SIMGRID
return _starpu_simgrid_get_nbhosts("CUDA");
#else
int cnt;

cudaError_t cures;
cures = cudaGetDeviceCount(&cnt);
if (STARPU_UNLIKELY(cures))
return 0;

if (cnt > STARPU_MAXCUDADEVS)
{
fprintf(stderr, "# Warning: %d CUDA devices available. Only
%d enabled. Use configure option --enable-maxcudadev=xxx to update the
maximum value of supported CUDA devices.\n", cnt, STARPU_MAXCUDADEVS);
cnt = STARPU_MAXCUDADEVS;
}
return (unsigned)cnt;
#endif
}

void _starpu_init_cuda(void)
{
ncudagpus = _starpu_get_cuda_device_count();
STARPU_ASSERT(ncudagpus <= STARPU_MAXCUDADEVS);
}

static int execute_job_on_cuda(struct _starpu_job *j, struct _starpu_worker
*args)
{
int ret;
uint32_t mask = 0;

STARPU_ASSERT(j);
struct starpu_task *task = j->task;

struct timespec codelet_start, codelet_end;

int profiling = starpu_profiling_status_get();

STARPU_ASSERT(task);
struct starpu_codelet *cl = task->cl;
STARPU_ASSERT(cl);

ret = _starpu_fetch_task_input(j, mask);
if (ret != 0)
{
/* there was not enough memory, so the input of
* the codelet cannot be fetched ... put the
* codelet back, and try it later */
return -EAGAIN;
}

_starpu_driver_start_job(args, j, &codelet_start, 0, profiling);

#if defined(HAVE_CUDA_MEMCPY_PEER) && !defined(STARPU_SIMGRID)
/* We make sure we do manipulate the proper device */
starpu_cuda_set_device(args->devid);
#endif

starpu_cuda_func_t func =
_starpu_task_get_cuda_nth_implementation(cl, j->nimpl);
STARPU_ASSERT(func);

#ifdef STARPU_SIMGRID
_starpu_simgrid_execute_job(j, args->perf_arch, NAN);
#else
func(_STARPU_TASK_GET_INTERFACES(task), task->cl_arg);
#endif

_starpu_driver_end_job(args, j, args->perf_arch, &codelet_end, 0,
profiling);

_starpu_driver_update_job_feedback(j, args, args->perf_arch,
&codelet_start, &codelet_end, profiling);

_starpu_push_task_output(j, mask);

return 0;
}

static struct _starpu_worker*
_starpu_get_worker_from_driver(struct starpu_driver *d)
{
unsigned nworkers = starpu_worker_get_count();
unsigned workerid;
for (workerid = 0; workerid < nworkers; workerid++)
{
if (starpu_worker_get_type(workerid) == d->type)
{
struct _starpu_worker *worker;
worker = _starpu_get_worker_struct(workerid);
if (worker->devid == d->id.cuda_id)
return worker;
}
}

return NULL;
}

/* XXX Should this be merged with _starpu_init_cuda ? */
int _starpu_cuda_driver_init(struct starpu_driver *d)
{
struct _starpu_worker* args = _starpu_get_worker_from_driver(d);
STARPU_ASSERT(args);
unsigned devid = args->devid;

_starpu_worker_start(args, _STARPU_FUT_CUDA_KEY);

#ifndef STARPU_SIMGRID
init_context(devid);
#endif

_starpu_cuda_limit_gpu_mem_if_needed(devid);
_starpu_memory_manager_set_global_memory_size(args->memory_node,
_starpu_cuda_get_global_mem_size(devid));

_starpu_malloc_init(args->memory_node);

/* one more time to avoid hacks from third party lib :) */
_starpu_bind_thread_on_cpu(args->config, args->bindid);

args->status = STATUS_UNKNOWN;

float size = (float) global_mem[devid] / (1<<30);
#ifdef STARPU_SIMGRID
const char *devname = "Simgrid";
#else
/* get the device's name */
char devname[128];
strncpy(devname, props[devid].name, 128);
#endif

#if defined(STARPU_HAVE_BUSID) && !defined(STARPU_SIMGRID)
#if defined(STARPU_HAVE_DOMAINID) && !defined(STARPU_SIMGRID)
if (props[devid].pciDomainID)
snprintf(args->name, sizeof(args->name), "CUDA %u (%s %.1f
GiB %04x:%02x:%02x.0)", devid, devname, size, props[devid].pciDomainID,
props[devid].pciBusID, props[devid].pciDeviceID);
else
#endif
snprintf(args->name, sizeof(args->name), "CUDA %u (%s %.1f
GiB %02x:%02x.0)", devid, devname, size, props[devid].pciBusID,
props[devid].pciDeviceID);
#else
snprintf(args->name, sizeof(args->name), "CUDA %u (%s %.1f GiB)",
devid, devname, size);
#endif
snprintf(args->short_name, sizeof(args->short_name), "CUDA %u",
devid);
_STARPU_DEBUG("cuda (%s) dev id %u thread is ready to run on CPU %d
!\n", devname, devid, args->bindid);

_STARPU_TRACE_WORKER_INIT_END;

/* tell the main thread that this one is ready */
STARPU_PTHREAD_MUTEX_LOCK(&args->mutex);
args->worker_is_initialized = 1;
STARPU_PTHREAD_COND_SIGNAL(&args->ready_cond);
STARPU_PTHREAD_MUTEX_UNLOCK(&args->mutex);

return 0;
}

int _starpu_cuda_driver_run_once(struct starpu_driver *d)
{
struct _starpu_worker* args = _starpu_get_worker_from_driver(d);
STARPU_ASSERT(args);

unsigned memnode = args->memory_node;
int workerid = args->workerid;

_STARPU_TRACE_START_PROGRESS(memnode);
_starpu_datawizard_progress(memnode, 1);
_STARPU_TRACE_END_PROGRESS(memnode);

struct starpu_task *task;
struct _starpu_job *j = NULL;

task = _starpu_get_worker_task(args, workerid, memnode);

if (!task)
return 0;

j = _starpu_get_job_associated_to_task(task);

/* can CUDA do that task ? */
if (!_STARPU_CUDA_MAY_PERFORM(j))
{
/* this is neither a cuda or a cublas task */
_starpu_push_task_to_workers(task);
return 0;
}

_starpu_set_current_task(task);
args->current_task = j->task;

int res = execute_job_on_cuda(j, args);

_starpu_set_current_task(NULL);
args->current_task = NULL;

if (res)
{
switch (res)
{
case -EAGAIN:
_STARPU_DISP("ouch, CUDA could not actually
run task %p, putting it back...\n", task);
_starpu_push_task_to_workers(task);
STARPU_ABORT();
default:
STARPU_ABORT();
}
}

_starpu_handle_job_termination(j);

return 0;
}

int _starpu_cuda_driver_deinit(struct starpu_driver *d)
{
struct _starpu_worker* args = _starpu_get_worker_from_driver(d);
STARPU_ASSERT(args);
unsigned memnode = args->memory_node;

_STARPU_TRACE_WORKER_DEINIT_START;

_starpu_handle_all_pending_node_data_requests(memnode);

/* In case there remains some memory that was automatically
* allocated by StarPU, we release it now. Note that data
* coherency is not maintained anymore at that point ! */
_starpu_free_all_automatically_allocated_buffers(memnode);

_starpu_malloc_shutdown(memnode);

#ifndef STARPU_SIMGRID
deinit_context(args->workerid);
#endif

_STARPU_TRACE_WORKER_DEINIT_END(_STARPU_FUT_CUDA_KEY);

return 0;
}

void *_starpu_cuda_worker(void *arg)
{
struct _starpu_worker* args = arg;
struct starpu_driver d =
{
.type = STARPU_CUDA_WORKER,
.id.cuda_id = args->devid
};

_starpu_cuda_driver_init(&d);
while (_starpu_machine_is_running())
_starpu_cuda_driver_run_once(&d);
_starpu_cuda_driver_deinit(&d);

return NULL;
}

#ifdef STARPU_USE_CUDA
#ifdef STARPU_HAVE_MAGMA
void starpu_magma_report_error(const char *func, const char *file, int line,
magma_err_t status)
{
char *errormsg;
switch (status)
{
case MAGMA_SUCCESS:
errormsg = "success";
break;
case MAGMA_ERR_NOT_INITIALIZED:
errormsg = "not initialized";
break;
case MAGMA_ERR_REINITIALIZED:
errormsg = "reinitialized";
break;
case MAGMA_ERR_NOT_SUPPORTED:
errormsg = "not supported";
break;
case MAGMA_ERR_ILLEGAL_VALUE:
errormsg = "illegal value";
break;
case MAGMA_ERR_ALLOCATION:
errormsg = "allocation";
break;
case MAGMA_ERR_INTERNAL_LIMIT:
errormsg = "internal limit";
break;
case MAGMA_ERR_UNALLOCATED:
errormsg = "unallocated";
break;
case MAGMA_ERR_FILESYSTEM:
errormsg = "filesystem";
break;
case MAGMA_ERR_UNEXPECTED:
errormsg = "unexpected";
break;
case MAGMA_ERR_SEQUENCE_FLUSHED:
errormsg = "sequence flushed";
break;
case MAGMA_ERR_HOST_ALLOC:
errormsg = "host alloc";
break;
case MAGMA_ERR_DEVICE_ALLOC:
errormsg = "device alloc";
break;
case MAGMA_ERR_CUDASTREAM:
errormsg = "cuda stream";
break;
case MAGMA_ERR_INVALID_PTR:
errormsg = "invalid pointer";
break;
default:
errormsg = "unknown error";
break;
}
fprintf(stderr, "oops in %s (%s:%d)... %d: %s \n", func, file, line,
status, errormsg);
STARPU_ABORT();
}
#endif

void starpu_cublas_report_error(const char *func, const char *file, int line,
cublasStatus status)
{
char *errormsg;
switch (status)
{
case CUBLAS_STATUS_SUCCESS:
errormsg = "success";
break;
case CUBLAS_STATUS_NOT_INITIALIZED:
errormsg = "not initialized";
break;
case CUBLAS_STATUS_ALLOC_FAILED:
errormsg = "alloc failed";
break;
case CUBLAS_STATUS_INVALID_VALUE:
errormsg = "invalid value";
break;
case CUBLAS_STATUS_ARCH_MISMATCH:
errormsg = "arch mismatch";
break;
case CUBLAS_STATUS_EXECUTION_FAILED:
errormsg = "execution failed";
break;
case CUBLAS_STATUS_INTERNAL_ERROR:
errormsg = "internal error";
break;
default:
errormsg = "unknown error";
break;
}
fprintf(stderr, "oops in %s (%s:%d)... %d: %s \n", func, file, line,
status, errormsg);
STARPU_ABORT();
}

void starpu_cuda_report_error(const char *func, const char *file, int line,
cudaError_t status)
{
const char *errormsg = cudaGetErrorString(status);
printf("oops in %s (%s:%d)... %d: %s \n", func, file, line, status,
errormsg);
STARPU_ABORT();
}
#endif /* STARPU_USE_CUDA */

#ifdef STARPU_USE_CUDA
int
starpu_cuda_copy_async_sync(void *src_ptr, unsigned src_node,
void *dst_ptr, unsigned dst_node,
size_t ssize, cudaStream_t stream,
enum cudaMemcpyKind kind)
{
#ifdef HAVE_CUDA_MEMCPY_PEER
int peer_copy = 0;
int src_dev = -1, dst_dev = -1;
#endif
cudaError_t cures = 0;

if (kind == cudaMemcpyDeviceToDevice && src_node != dst_node)
{
#ifdef HAVE_CUDA_MEMCPY_PEER
peer_copy = 1;
src_dev = _starpu_memory_node_get_devid(src_node);
dst_dev = _starpu_memory_node_get_devid(dst_node);
#else
STARPU_ABORT();
#endif
}

if (stream)
{
_STARPU_TRACE_START_DRIVER_COPY_ASYNC(src_node, dst_node);
#ifdef HAVE_CUDA_MEMCPY_PEER
if (peer_copy)
{
cures = cudaMemcpyPeerAsync((char *) dst_ptr, dst_dev,
(char *) src_ptr, src_dev,
ssize, stream);
}
else
#endif
{
cures = cudaMemcpyAsync((char *)dst_ptr, (char
*)src_ptr, ssize, kind, stream);
}
_STARPU_TRACE_END_DRIVER_COPY_ASYNC(src_node, dst_node);
}

/* Test if the asynchronous copy has failed or if the caller only
asked for a synchronous copy */
if (stream == NULL || cures)
{
/* do it in a synchronous fashion */
#ifdef HAVE_CUDA_MEMCPY_PEER
if (peer_copy)
{
cures = cudaMemcpyPeer((char *) dst_ptr, dst_dev,
(char *) src_ptr, src_dev,
ssize);
}
else
#endif
{
cures = cudaMemcpy((char *)dst_ptr, (char *)src_ptr,
ssize, kind);
}


if (STARPU_UNLIKELY(cures))
STARPU_CUDA_REPORT_ERROR(cures);

return 0;
}

return -EAGAIN;
}
#endif /* STARPU_USE_CUDA */

int _starpu_run_cuda(struct starpu_driver *d)
{
STARPU_ASSERT(d && d->type == STARPU_CUDA_WORKER);

int workerid = starpu_worker_get_by_devid(STARPU_CUDA_WORKER,
d->id.cuda_id);

_STARPU_DEBUG("Running cuda %u from the application\n",
d->id.cuda_id);

struct _starpu_worker *workerarg =
_starpu_get_worker_struct(workerid);

workerarg->set = NULL;
workerarg->worker_is_initialized = 0;

/* Let's go ! */
_starpu_cuda_worker(workerarg);

/* XXX: Should we wait for the driver to be ready, as it is done when
* launching it the usual way ? Cf. the end of
_starpu_launch_drivers()
*/

return 0;
}
/* StarPU --- Runtime system for heterogeneous multicore architectures.
*
* Copyright (C) 2009-2012 Université de Bordeaux 1
* Copyright (C) 2010, 2011, 2012 Centre National de la Recherche
Scientifique
*
* StarPU is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* StarPU is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU Lesser General Public License in COPYING.LGPL for more details.
*/

#include <starpu.h>
#include <starpu_cuda.h>
#include <common/config.h>
#ifdef STARPU_USE_CUDA
#ifdef STARPU_HAVE_MAGMA
#include <magma.h>
#endif
#endif

#ifdef STARPU_USE_CUDA
static void init_cublas_func(void *args STARPU_ATTRIBUTE_UNUSED)
{
#ifdef STARPU_HAVE_MAGMA
magma_err_t magmast = magma_init();
if (STARPU_UNLIKELY(magmast))
STARPU_MAGMA_REPORT_ERROR(magmast);
#endif
cublasStatus cublasst = cublasInit();
if (STARPU_UNLIKELY(cublasst))
STARPU_CUBLAS_REPORT_ERROR(cublasst);

cublasSetKernelStream(starpu_cuda_get_local_stream());
}

static void shutdown_cublas_func(void *args STARPU_ATTRIBUTE_UNUSED)
{
cublasShutdown();
#ifdef STARPU_HAVE_MAGMA
magma_finalize();
#endif
}
#endif

void starpu_cublas_init(void)
{
#ifdef STARPU_USE_CUDA
starpu_execute_on_each_worker(init_cublas_func, NULL, STARPU_CUDA);
#endif
}

void starpu_cublas_shutdown(void)
{
#ifdef STARPU_USE_CUDA
starpu_execute_on_each_worker(shutdown_cublas_func, NULL,
STARPU_CUDA);
#endif
}



Archives gérées par MHonArc 2.6.19+.

Haut de le page