Subject: Discussion related to cado-nfs
List archive
[cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?
Chronological Thread
- From: Laël Cellier <lael.cellier@laposte.net>
- To: cado-nfs@inria.fr
- Subject: [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?
- Date: Sun, 24 Nov 2024 16:59:32 +0100
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=lael.cellier@laposte.net; spf=Pass smtp.mailfrom=lael.cellier@laposte.net; spf=None smtp.helo=postmaster@smtp-outgoing-2001.laposte.net
- Ironport-data: A9a23:O+xhoaky+trHsfhzvxRCXmzo5gwyIkRdPkR7XQ2eYbSJt1+Wr1Gzt xJMDD+HM6mPYjCjeYwlaoXgoRlS7cOAzoRgSVQ5+HwyH1tH+JHPbTi7BhepbnnKdqUvb2o+s p5AMoGYRCwQZiWBzvt4GuG59RGQ7YnRGvymTrSs1hlZHWdMUD0mhQ9oh9k3i4tphcnRKw6Ws LsemeWGULOe82Ayazh8B56r8ks14K2r4m9A5zTSWNgS1LPgvylNZH4gDfrpR5fIatE8NvK3Q e/F0Ia48gvxl/v6Io7Nfh7TKyXmc5aKVeS8oiI+t5uK3nCukhcPPpMTb5LwX6v4ZwKhxLidw P0V3XC5pJxA0qfkwIzxWDEAe81y0DEvFBYq7hFTvOTKp3AqfUcAzN10K3swJocl290pW0oRy uYcM2AAbUuc0rfeLLKTEoGAh+w4KdXzeYQCpn5nzDfWSKx+GcmFR6zS4sRE0XE2i9wm8fT2P pRBL2s1Kk2aP1sWYgd/5JEWxI9EglH7ejBc7lmYoa427nL7yAVp16PxPZzTd8DiqcB9xxfF+ zqWojumav0cHIyNzgTd4iimvLbOnwr7CIINV6Gn7/E/1TV/wURIUkVJCAPhyRWjsWa1Ut5Yb koa4QI1vK0q/QqqSMP8Vlu2uha5UgU0QN9MC6g99R2CzavS7EPDXjBdCDpIcNs9qMJwQzE2v rOUoz/3LSZIiruOQ0+8zenOhmyNIywOfWIBPjBRGGPp/OLfiI00ixvOSPNqH6i0ksD5FFnML 9ai8XRWa1I70J5j6kmrwW0rlQ5AsbDndGYICuj/RWe59kZ+eZKqYI2u5h2Bta4ZaoKQVl6ao HVCncWChAzvMX1vvHLSKAnuNOj3jxpgDNE6qQI2d3XG32j0k0NPhagKvFlDyL5Ba67ogwPBb k7Joh9275ROJnasZqIfS9vuUJ5xnfa+RIy4B6G8gj9yjn5ZKlbvEMZGOxX44owRuBF0z8nTx L/EK5rwXR7294w7kmrtLwvi7VPb7ntknTyOHcqTI+WPzr2EYHKRSLEIeECHBt3VH4vayDg5B +13bpPQoz0GCbWWSnCOreY7cwpWRVBlXsqeg5IMKYa+zv9ORDtJ5wn5nel5I9QNcmU8vrugw 0xRrWcDkwuj2CaXc1XTAp2hAZu2NatCQbsAFXREFT6VN7ILOO5DNY9GL8JrL4o0vvdu1+B1R PQjcsCNSKYHADfe9jhXKdG3oIV+fV75zUiDLgi0UggZJpRAfg3u/sO7Xw3N8CJVMDG7m/Fjq JKd1yTaY6E5eSJcMOjsZsmC8XaNrFkGuecrX0L3MthZI0rt145xKh3OtPw8IuBSCBPl2je6/ hqcWilAl7Ocu4Uw+8Xsh4mbirz0CNpONFRRRFPfybPrMSXx33GCxLVYW72iZgHtV2LT+YSja 95Kzvr6DuY1oVZSv6d4EJdp1agY5dD/g5N7lyNPAyztQ3qnLphCM0u295BDmYMVz4AIpDbsf FyE/+drHImgOeTnIQY3HxUkZOHS7sMksGDewtptKXqr+RIt2qSMVHhTGBy+iCZ9Cr9RG6F9y McDvP8m0SCOuiAIAP2n0B8Nr3+tK0YeWZoJrpsZWY/nqjQ6w2F4PKDzNHXE34GtWf5tbG8RP T6mtIjTje99x23DUUYJO1rj4O5/vakK6Td2lAIsBlLRgdfUpO4F7DsI+xQNcwll5BFm0eVyB 2tVC3NINZi+pwlPuswScF2vSidgBQKY8HPf01EmtnPUZGj2W33vLF8SA/es/kcY+U1yYTIA2 umq8zv4YwbTfeXa/Cg7aWh6odPNEP1z8Qzjnpi8PsKnRpMVXxvsspWMV0Ep9ST1MJgUv1LWg 9Vl58BMUL3LDjERqKgFFIWq77QcZxSaLmhkQ/s63qc2MUzDWTO1gx6iFluQf55TGvn07kOIM cxiCcZRXRCY1izVjDQ6B7YJEoBkjswS+9sOVbP6F1Eo64LFgGJSj6vR0SziiEsAYdZky589I 7yMUQOyKDWbgH8MllLdqMVBBHGDXuAFQw/Bx8GwzvQCEsMSkeNrcHxq6ICOgVeuDFJF8S6X7 ST5XI2H68x5yI9poZngLbUbOSWwNuHIdbqp9CKdjo1wSO3hYOb0mSEbkF3FBzhtHKAwXo13n IudsdSs00Liuq03Yl/jmJKANvdo4NWyV8UGIM7YEWRQmBXaec7z4iks/3KzBoxJneh8uOimZ VqcQ+mheeEFX+xywCVuVBFfNBIGUYLlQ7zFpx7hi9ixUj0jiRfmKvGj/l/XNVBrTDcCYcDCO 1WlqsSQ6cB9h6USIh09XtVNIYJyeX3nUosYL+zBjyGSVDSUswnTq4nZtEQS7B/QASO5C+f82 5XOQyb+eDmUuK3lyNJ4sZR4jiYIDURS0PUBQUYAx+FY0zyKLnYKDeA4A6U0Dpt5li/T1pahQ BrvaGAkKzv2XBUaUBHazengYDyiBb01Co+kHgAqwkKaVX7nTsfISr5s7Txp7HpKayPuhrPvY 80X/nrreAO92Nd1TOIU/ea2mvpj2uic/H8T5EThiIbnNn7y21nROKBJR2KhlBArEv0hUG3QI HQtAGdZXE68SEj+VJw4IycTHBgBuyjzwnMuYDvnLBMzfWmE5LUo9RE9E7ibPn4/gAAiILcWQ mjrSi2L7nz+Nrk7p/4yo9xw6UNrIavjIyV5RZMPgSUWlrm38XgqecUPgULjiS3kFBF3Szvgq 9Vn35Ty6Ilp5qycNH16BDjlI65Mb08=
- Ironport-hdrordr: A9a23:Qu6F2qiUUX7xcHhozXlB5DDJl3BQXjAji2hC6mlwRA09TyXqrb HXoB19726ItN9xYgBbpTnkAtj9fZqyz+8X3WGOVY3SJzUO1FHYSL2KjrGSoQEIeRefygc178 4JGclD4bbLfD9HZKjBkW+F+pobsby6GduT9J7j5kYoSBhsL6Vp7wJ4DQjzKCFLbTgDAIM/UI CE7s5DqyWtfB0sAPiTNz0BRu+GvcTCkInvfB4ACXcchzWmvHet4L7+VxeZ2woTSD4n+9xOzV T4
- Ironport-phdr: A9a23:/Uul/xMOI+dlv1YQQUAl6nYCBxdPi9zP1u491JMrhvp0f7i5+Ny6Z QqDvqwr0ASCDdyTq6odzbaN6+a4AS1IyK3CmU5BWaQPbSNNsd8RkQ0kDZzNImzAB9muURYHG t9fXkRu5XCxPBsdMs//Y1rPvi/6tmZKSV3wOgVvO+v6BJPZgdip2OCu4Z3TZBhDiCagbb9oI xi7oxjdutMZjIZsJao8yQbFqWZMd+hK2G9kP12ekhjg6suq4JJv7yFcsO89+sBdVqn3Y6s3Q btEATo8NGw7+NPlvgTZQwuV4XscXGQWkh5WDAXA8Rr3QJT/vDbku+RkwCWVMtH4Qr4yWTS58 qdkUwTohzsdNz44627YlMp9h79GrR27phx/x4nUYJyJNPd7Y6jQc88WSXZHU81MUSFKH4GyY JYVD+cZPuhWoYbyqFUOoxWjGweiHvvhxSNHiHLtwa06yv4sHR3a0AA9Hd8DtmnfotXvNKcVV OC41K/Gwi/faPNSxDzw9pbHchQlofGNQ71wa9faxE4rFwzfkFqQrZbpMC+L2eQJt2ib7vRvV fi0hm4jsQ5xuj+vxtwwiobXnI4VzE7L9TlgzYszONa3R1J1b8S+H5tMqyGVKZF2QsU6Tmx0p io31rMItJ+ncCUJx5oq2h7SZuKbfoSV4R/uWuecLDV7iX9hd7+ymwq+/Eq8xuDzVMS5zkpGo CpLnNTRqnwA0QHY5MaASvt45Eih2DCP2hjJ5eFeLkE0lLTbJ4Qmwr4qmZoet1nIECzumEjuk aObd1ko9vKs5uj5eLnqu4GQOoBuhg3jLqgjmdSzDOcmPgQUXmWW+P6w2KPi8EHjXblHivk7n 6/Eu53EIcQbu7W5AxNL3YY59hi/Djan38oAkHUbKl9OZQiJgJLzO17UJfD1Ffe/jEqokDds3 /3GJbjhAonVLnTal7fhYKp960FbyAoyy9Bf6ItYBq8dLP7vR0P9rtjYAQUhMwyz2ObnFMty2 pkYWW2RHq+VKKLSsVmW6eIzO+SAeY4YtCrnJ/Uh+fLil2I1lUEScKWzwJcbdHO1EuxjI0qDY HrshtkBEX0Nvgo7VOHqjEeNXiBXZ3qoQ60z+DU7CIanDYjdXICgm7iB0z2jHp1RfWBGFk6DH W3ud4qaR/cAcCSSLdR5nTweSbehU5Mh1Q2ptALi1rZrNvDU9TEAtZL/yNh14PXemg0o+jNpC MSRymeNT29vnm4TXD833KV/oVRnxVuZ0Kh4heZYFd1J6P9TXAc6L82U8+svANn+XUfHcMyhS VC8Q9zgDytiYMg2xooqasV5U/6vihTC0jDiV7scmrjND5Ew9qPRxVD1Lt560GrLkq8skw91E YN0KWS6i/snpEDoDInTnhDB/07LXaEV3SqXsXyG0XLLpkZTFgh5TaTCW3kbIErQt9XwoE3YH Pe1EbpyFAxHxIaZL7dSLMXzhABCTfrnft/TZ2awln2YAR+QwaiQYczsdnlOlD7FBh08mhsIt W2DKRB4Ay6gp2zECzk7EVviZwXn/O16qX6hZks91waRc0An0bepqVYOnfLJbfQV0/ofvTs57 TV5GFHox9XNF9+JvBZsZo1HZM8lpVBayW3etgpye8b4d/kkglcGdB9rsgXo2gkf5pxot88so TtqyQNzLfjdy1Zdb3aC2pu2PLTLK2709RTpaqjM21iY3szEsqEIoO81rVnupmTLXgIr7mln3 t9J0nCd+oSCDQwcVoj0W1o28B4yrq/TYy007YfZnXN2Nqz8vjjH0tMvTOwrr3ToN9NWPafCH wL2F8wXHeCqIfQtgESkKBQJIKEa9aI5Od+na+rTwLSib4MC1HqtiWVK5pw401rZrnQkDL+Sm c9fn7fBhlvUMlW0xE2suc32h41eMDQbH27ljDPhGJYUfKp5O4ACFWapJcSzgNR4nZ/kHXBCp zvBTxsL3tGkfR2KYhnzxwpVgA4TqHGj3yC1yzh1nisBqqOH2zfSzqLkeQZNaQspDCFyyEzhJ 4S5lYVQWEGla04imR+h5Evg76xSvKNkM2SVR0pUNXuTTSkqQu67sbyMZNRK4ZUjvHBMUeiyV ludT6b0vxoQ1y6L83J2/DkgbHnqv5z4m0Y/k2eBNDNpq3Gff8hsxBDZ7diaRPhL3zNASjMqw TXQA1G9OZGu87D239/Hu+26EWmsUplSfDPDyYqYszCn6CtsDAH3k/2om9LhGBQ3ymeiiYEsB H+O9UygJNCzh+yzKocFNgFwCUX56tZmF402iYY2iJwKmDAbipiT4XsbgDL2ONRf17j5aSloJ 3ZDyNrU7Q75nUx7eyvXn8SoDDPEmJcnPoHqMQZ0kmon4stHCbmZ9ulBlCpx+B+jqB7JJOJ6l XEbwOcv73gTh6cIvhAsx2OTGON3fwEQMCrymhCP9937or9QYTPldbG90Ax1kNSlDbyYigVVQ HHiZppkGyJspJYaUhqEwDjo54fodcOFJ9YauxnSmBrEi+lYMro1n+INnjZqf2TwoTd2roxzx Qwr1pa8so+dLmxr96/sGR9UOAr+YMYL8y3sh6JTzY6GmpqiFZJ7FnAXTYPlGLi2RSkKu62tZ GPsWHUs722WEr3FEUqD5Vd6+jjRRouzOSjfJWFFn4w8HF/MfgoG2lxSAml9xMBzfuyz7Ormd koxpjUY51qi7wBJ1votLR70FGHWuAavbD4wDpmZNhtfqA9YtQ/TNoSF4+R/Ejs9nNXppRGRK mGdewVDDH0YEk2CCVf5O7Cy5N7Gu+GGD+u6JvHKbP2As+tbH/uPwJuu1MNh8VPufo2XOWJ+C vQgxkdZdWt8B9ycnCgTRCsWkS2INZbD/VG48zVwtdyytvLmREOn5IeCDadTLcQ6+x2yhvTmV abYjyJ4JDBEk5IUkCaWkP5OhhhL0X0oLmH9QtFi/WbXQandm7FaFUseYiJ3bo5T6r4kmxNKM ojdg8/00bhxirg0DU1EXBrvgJLMB4RCLmejOVfAHEvOOq6BIGiBx8j6ZeW3RLlUjehOnxm5o TGAD0KlODmf3WqMNVjnIaRXgSeXMQYL8pm6aQpoAHP/QcjOcRinKJpwkCE5xrwyiTaQbTZFd zx1a0RWsrDW6y5EyKYaeSQJ/j9uKu+KnDyc5u/TJ8MNsPdlNS9zkvpT/HUwz7Y9BMBsX/lpg G7Vs8JhpFCgnazVkmI+Fh5HsjFQmI/Nu0h+a/2xHnxoXX/c+wkR4COWBghY/7ON5fXrsrhX0 cTC0qT+NGUbm+8=
- Ironport-sdr: 67434d72_z1F/Tz03AjvqOeP/vaIQnnbCSCV6Zq2JkxLb/8Acruin9ez WWM/QE4Dp5XfSXWHizyVX27H5VoC23nNm/x2omw==
Bonjour,
I was reading this paper : https://arxiv.org/pdf/2409.08784. Although it contains rants and the timings are questionable unless they only have their phones, the underying idea is to pick up several factor bases instead of 1 in order to shrink the number of individual discrete logarithms for a given target.
Now, I’m only a beginner, but is this an idea that can be useful for more advanced algorithms ? They give full step by step of their textbook algorithm.
Cordialement,
- [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?, Laël Cellier, 11/24/2024
- Re: [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?, Pierrick Gaudry, 11/25/2024
- Re: [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?, Laël Cellier, 11/25/2024
- Re: [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?, Pierrick Gaudry, 11/25/2024
- Re: [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?, Laël Cellier, 11/25/2024
- Re: [cado-nfs] Can using multiple factor bases be used for computing discrete logarithm faster ?, Pierrick Gaudry, 11/25/2024
Archive powered by MHonArc 2.6.19+.