Subject: Discussion related to cado-nfs
List archive
Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?
Chronological Thread
- From: Laël Cellier <lael.cellier@laposte.net>
- To: cado-nfs@inria.fr, Pierrick Gaudry <pierrick.gaudry@loria.fr>
- Subject: Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?
- Date: Sun, 1 Dec 2024 15:57:39 +0100
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=lael.cellier@laposte.net; spf=Pass smtp.mailfrom=lael.cellier@laposte.net; spf=None smtp.helo=postmaster@smtp-outgoing-2001.laposte.net
- Ironport-data: A9a23:Be3evaxeieOe5BQfGER6t+eEwirEfRIJ4+MujC+fZmUNrF6WrkUGy GZMCzrQPPyLZDOnfNokaYzgoxkB6pbSzNFnSgpp/lhgHilAwSbnLYTAfx2oZ0t+DeWaERk5t 51GAjXkBJppJpMJjk71atANlVEliefSAOCU5NfsYkhZXRVjRDoqlSVtkus4hp8AqdWiCmthg /uryyHkEAHjgmQc3l48sfrZ9Eo15K2q4Vv0g3RnDRx1lA+G/5UqJMlHTU2BByOQapVZGOe8W 9HCwNmRlo8O10pF5nuNy94XQ2VSKlLgFVDmZkl+B8BOtiN/Shkaic7XAhazhXB/0F1ll/gpo DlEWAfZpQ0BZsUgk8xFO/VU/r0X0QSrN9YrLFDm2fF/wXEqfFPL6u9/IGcPFLc92ctFJkN02 9xGDGACO0Xra+KemNpXS8F3g9g7ac72IIwYu3dviGuBVa9gRZnbRL7W6Jle0StYasJmRKiGI ZtDL2M1MFKZO00n1lQ/UPrSmM+sj3T7NTZVrFaUqLAf52HLyxdt3f7rPca9ltmiHJ0OxhfF/ DOel4j/KiERDcy/0Susy1a11/+XmQ7HSqM4SpTto5aGh3XInDRMVUVMPbehmtGyg0K5HtRRM GQP6y82pO4z8laqR5/zRXWFTGWspRsAQ59XDvE17wCLxe+Ou17AQGwNVjladNFgssIqLdA36 rOXt/TAHy1DloS8c1e+24WzjwmcGXYxfWBXMEfoUjA5y9XkpYgyiDfGQdBiDLO5g7XJ9dfYn mviQM8W2u57sCIb65hX62wrlBqCnPD0ouMd/QDLRiei8x92Y4+jaMnysQCCq/JJNIGCUlTHu nUY8yR/0AzsJc/S/MBuaLxTdF1M2xpjGGGG6bKIN8V4nwlBA1b5IehtDMhWfS+FyPosdz7ze 1P0sghM/pJVN3bCRfYoONjgWp12nPS6TY6NuhXogjxmPMEZmOivonsGWKJs9zm1zyDAbIlgY 8vHIa5A815GV/o6pNZJewvt+eRxnn9jnTm7qWHT0BO91baaZXiYAawMWGZinchnhJ5oVD79q o4FX+PTkk03eLSnPkH/r9RPRXhUdiJTLc6t9KRqmhurflAO9JcJV6WJmetJlk0Mt/g9q9okC VnmARQBmQCm3iaWQehIA1g6AI7SsV9EhSpTFUQR0ZyAghDPuK72tP5DJagkN6Iq7vJixvNSR vwIMZfISPdWRziNv3xXYZDhpcYwPF6mlCCfDRqDOTIfRp9HQxCW29nGegC0yjICIBDqvuQDo pqh9Djhf7w9eypYAvzrNc2fl2GKgSBFmcZZfVf5Hd1ISUC9rKloM3PQi9E0EeEtKDLC5CCr5 yyICkwioc3I/os52/jSpKW+t4zyOfBPLklbOGj67LiNKijR+FS487JASOqleTP8Vnv+3qepd cF57qjbG+Jeunpkv65XMadZ/Yhn6/TB/7ZlnxlZRlPVZFGVO5ZcC3ih3/gXkJZSx7Vc6DCEa mjW9vZ0Yby2ad7YSngPLw8Yb8OG5/Eeuh/Wyd8XeEzaxitGzICrYHVoHSunqXJideNuEYYf3 +0eltYc6FW/hjoUI9+2tH1o2FrWHEMQcZcMl888O5DquDoJ21sZQJ37Cw3K2r+tRehIEHEXJ m6zuPKfqZVanlHPYlgiJ0jrhOB9v6kDiDpO7V0FJmmKpOb7u+8K7EVR3wgaHgVx5Tdb4t13I VluZhFUJ73R3jJGh/pjfmGLGiNTDi2j5WjOmgIFu2HHRnb1UEjxDXIYFcuQ9m837GgHWGBpx +yF+lbcUBLBXsL47g0tU2FL9t3hSt1Q8FXZucaFRs6qIbgzUQDHsISPO1UamkDCOtwgonHIv s9WxfZAUrL6PisuvKELMYmW+rAOQhSiJmYZY/Ve0I4WPGPbIhee5COvLh2vR8ZzOPD6y0+0J MhwLMZpVR7l9iKvrCgeNJEcMY1Pg/8ly9oTSIzFfVdcneOkkQNol5bM+gzVpmwhGYxumPlgD LLhTWuJF2jIiEZEn2PIktJ/BVO5Rts5fyz54vG+9bQYNpAEsdw0S3oI7JmPgyy3PjdkrjWuh yGSQ4/Nzudn95ZgoJu0LIVHGDePCI3SUMamzVmNlupgPPL1H+XAjQc3kmXcHh93OOIRUutnl L7Wv9/Q2ljEjYkMUGvYusegErlJ7urjTuZ4D9/9KUcCvCqdWf3D5wkI1HC4JKdozvJcxJiDb CmpZPSgceU6X49m+0RUTCxFSTAPJr/SbJq8gQ+A99GyUgM81y7DJ/OZrU7ZV3lRLHI0CsevG z3KtOaLzfEGioZ1XTsvJexsWr18K3/dAZoWTcX772SkPzP5k2G5m+XQkDQ74mv2EViCKsHx5 KzFSjXYdBifvKLpzslTg7dtvy84XWpMvu0tQn0zo9JGqSi2LGojH9QvNZ8rDpJ1kCur8LraY DrLTnUpCASjfDBiXCj/3u/eXVakNrRTAuv6Gz0nwRrFIWP+ToaNG6Bo+Spc8m97MGmrhv2uL dYFvGb8JF6ty5VuXvwe/eG/nfwh/P7B23YU4gropqQe2frF7WkijxSN3TahVBAr1+nWkVnTY G8oWW9DQUe0DBSpSZ8mf3dNHwoFsXXpwilAgeJjBjrAk93z8QGC4KSX1yLPPnkraM0SI6USS DXxSnflD6W+xCkIoaVw0z42qfYcNB9Id/RW6IfnTBUVhL29rGIqI6vuWMbJoN4KoGZiLr8Wq tVgD7XSyqhIxIC9FYB6ETk0xq8=
- Ironport-hdrordr: A9a23:y/mHQaqkg+PS/MXlWAwkCMIaV5rNeYIsimQD101hICG9Afbo7v xG+85rqiMc6QxhJE3I/OrwRpVoLkmslqKcf+EqTM2ftWXdyRCVxcRZnPbfKl7bak/DH4xmtZ uIGpIWYLeQMbE5t7ed3ODSKadF/DDoytHOuQ6T9QYJcegQUdAZ0y5JTgODFQlzTAlCBZ02fa Dx2uN34z+4fjAMd8y+A3UbU+2rnbP2vaOjZAcAQwQ/4A2UhS6p77CSKXel9yZbVztOxPMs8W 3Znxf1j5/J3s2G9g==
- Ironport-phdr: A9a23:H1X7AxU0rzGOzAEoheyc3m0049bV8KxcXzF92vMcY1JmTK2v8tzYM VDF4r011RmVBtydtq0P1bqe8/i5HzBbudDZ6DFKWacPfiFGoP1VpTBoONSCB0z/IayiRA0BN +MGamVY+WqmO1NeAsf0ag6aiHSz6TkPBke3blItdaz6FYHIksu4yf259YHNbAVUnjq9Zq55I AmroQnLucQbj5ZuJrwxxxbLrXdFeudbzn5sKV6Pghrw/Mi98ZB//yhKp/4t68tMWrjmcqolS rBVEDspP2cp6cPxshXNURWB7WYGXGUMlRpIDQnF7BXkUZr0ryD3qOlz1jSEMMPvVbw7Viis4 KltSB/zlScILCU5/33Nisxxl61UvhSsrAFizoHOYYGVMP1+fr7Bfd4fWGFMUNpdWzBHD4ihd IYEEfYPMvhEoIn8v1sOrAWxBQ+wBOP01zREgmb60bAm3+g9FA3L2hErEdATv3TOtNj7N6kcX u+7w6fV0zvDYelY1zfl5ofKbh8vruqBXa5pccfL1UUjCx7Jg1eWpIf4Pz2VzOMNs22D4uRmT +2ol2onoBxvrzexwscsjojJiZwPylvZ8ih5xJw6KsO8SEJhfdGrDp9QtyWbN4RoWMMvWGVot zwiyr0Bop67YDYFxI4hxxHBd/yKao6F6Q/sW+iNOzl3nm5leK6hiBao90it0u3yW8a13VhFo SRIjtnCum4P2hHc5MWKRPVz81q91DuA0w3d6v9JLV00m6fHJJMswqM8moQcv0nAHiH7hUr7g bOQe0459Oao7OHnba/npp+aL4J7kBv+M6svmsyhG+g4NRIOX2ed9O+h17Pj5VX0TKhLg/Eqi KXUtI7WKd4GqqKnDAJZyJsv5wq8Aju+09kUg2MLIVNEdR6dkYTkOkvCLO38APq7hVmnjSlmx /TbPr36HpXCMGLDnqrgfbd89UFR0BY/wNZC7JxOEL4BOuj8WkrpudzYEBA5Nwu0zv78CNV4y oMeQXuDAqiEMKPOvl+I4eMvI++DZIMMpjrxN+Qp6+P0gX89g1AdZa6p3YALaH+mBPhmJVuWY Wb0jtcAF2cFoBY+QfT3hFCDTTJffXK/U7wm6j0mFo6rAp3PSp2xjLGCxCu7G4dZZmFCClCCC 3focICEVu8IaC2IPMBhliYIWqS/RI8l0RGutRH1y6B8I+rQ4CIYrZXj1MNp5+LNjx0y8yJ7D 9iF32GLVG57hnkISCMu3KBjvUx9zU+O3bVgj/xCCdNT/+9JUhs9NZPE0+N1Ec39WgXYctePR lamWc6rASoxT9I0298BeVxxG9SkjhDZ3iqlGaUZl7KRBM98zqWJ1HH9IIN7xW3u1a87jlBgT NELfVWni7Rl9gPQT6HAjkmDhu7+baURxjTM/2TFwmOTsFtJeAp3S6TMG34FMBj4t9P8s2fLz LvmIrkjNgpM04bWLqJHbpvigFFCRfr5ENDXe2Wqh2r2AxuUkODfJLH2cnkQiX2OQHMPlBoeq DPfbVBW7kaJpmvfCGcrDlfzewb39vE4rnqnT0gyxgXMbkt71rPz9ARGzeeERaY12bQJ8Dwkt y0yBEy0itbfBt7GrAdleKRRe/s56U9Azn7U8QpwIs/oNLhs02YXaB8/pEbyz1NyA4REn9Itq SYuxQd2b6mV1FdAeimw2ZnoPabLJy/08Qz8I7XO1AT419CbsrwK9Ox+q1jnu1SxEVE+9nx8z 9RP+2CZ+o2PCxcOXpXwVElyrUAi/vfeazE6/J/Zk3thLcFYqxfk3NQkTKsgwxekJJJENb+cU RT1C4scDtSvL+ojnx6oaAgFNaZc7vx8OcTubPaA1KOxWYQo1Du7kWRK5px82UOQ5mJ9TODPx ZMM3/Cf2EOOST79iF6rts2/l5pDYHkeGW+2yC6sA4A0BOU6eY8GDSGlLsmzx9hkr5rkQ3lD6 FPlAV4amYeodReUc13hzFhIz01ExB7v0SC8zjFyj3Qotv/GgnSIkr6kLUBbfDcTFDoH7x+kO 4W/gtEEUVL9agEokEDg/kPm3+1Ao7w5KWDPQEBOdiywLmd4U6L2uKDRBqwHoJ4uryhTV/yxJ F6ATbuo6R8T3ielFGZawDE2bRmus43+hAB3zmSQMDwgyRiRMdE13hrZ6NHGELRV1zcCAiJ1j T3WC0KUO9Cx+s6ImtHFv/z0BAfDHtVDNCLsy42Hri6y42ZnVAa+k/6EkdriCQEm0CX/2rGGT A3wpQ3nKsnu3qW+aqd8e1VwQUT784x8E51/lY05gNcR32Ibj9Ob5yhPnWD2ONRdkaXwCRhFD ToCztqT6wXh3ExuNFqNzpr+TWmQhM1se5G2b3gX1SQ0881RQP7KtPoVx20s+Ab+9FqBKfFm+ 1VVgeMj8nsbn/0EtEI2wyORD6pTVUhUMCrwlgiZutW3raFZfmGqIt3SnAJ1mdGsCq3HoxkJA SihPMZ4W3YqsoMmaAKftR+7opvpc9TRc98J4xidkhObyvNQNIp0jf0SwyxuJWP6u3Qhje89l x1nm5+g7+3lYy1g+ry0BhlAO3j7fcQWr3vphKta2M2b24SuE49JHjwTW4D0QLSuHS5Y5pGFf 06eVSYxrHuWA++VGQaS7AFtonbLEp2xH3WePH4C0dgkQhSBbh864khcTHAxmZg3ERqvzcrqf RJi5zwf0VX/rwNF1uNiMxSsGneavgqjbS04DYSONBcDpB8X/F/baIbNi4A7VzEd5JCqqxaBb 3CWdxgdR39cQVSKXhjiJuX8vIeYtbnCQLPkc72QPfLU96Y2u+6g45Wp38Mm+j+NMp7KJXx+F 7gg3VIFW3llGsPfkjFJSioNliuLYdTJ7BG7sjZ6qMyy6pGJEErm+JePBr1OMN5u5wH+gKGNM PSVjTp4LjAQ340FxHvBwrwSlFAIjCQmez6oGLUG/SnDKcCY0rdQFAIeYjhvOdFg9KcgxkxKJ NLUjdLz2fsi1qZsTVNMTVv6hszvY8EWYim8OF7BGEeXJeGGKDnMkKSVKeu3TbxdivkRtgXl4 GjDVR65eG3Zy3+wD0D8VIMExDuWNxFfpoynJxNkCGy4CcnjdgX+K9hvyzs/3bwzgHrOc28aK zl1NU1X/djypWtVhOtyH2tZ4z9rN+6Bzmyd5uTcbJ0btf9qDz5ck+tC528mxv1T4T0OF5kX0 GPC68VjpV2riLzF0j18TB9HsSpGnqqQuFl6fKLE6pZHWHDLuUhVtTzWDx0SoMB5B5vptrwam b2t3OrjbTxF9dzT584VAcPZfdmGPHQWOh3sADfIDQEBQFZD0EnbjlRai+2fsHuYsspiwnANs IELVqceU0EpGfQbDEsgRoRaedFzVysjiqKWysgF+SjmxPE+bMFTppfcSv/UB/jzem/xsA==
- Ironport-sdr: 674c796b_Eeg+H17K7N+0J4eTjjxV+1oR8NZf8dlZmvz7cU/eRJnxHFe oQvoCa7nmqhKB4Y6qhIPy0LYMQ7cjmiPfhmoo4A==
Bonjour,
yes, but my idea was never to use it for the small characteristics index calculus methods, so nevertheless I want details about how the Elliptic curve part simplification complexity… I’m only a student, so there’s lot of things I don’t understand,
Cordialement,
Le 01/12/2024 à 15:18, Pierrick Gaudry a écrit :
As you say, the techniques used in the family of algorithms with
quasipolynomial compexity are dedicated to small characteristics. They
have a O(p), at the very least, in their complexity, which makes them
completely useless in what we call medium characteristic. And this is not
a matter of having no access to the implementation: it's really about the
algorithm not working efficiently in that case.
As for using elliptic curves in this context, actually the idea was first
considered a long time ago, precisely in the medium characteristic case, by
Couveignes and Lercier:
https://arxiv.org/abs/0802.0282
Unfortunately, no practical speed-up is to be expected. And again, this
is not a matter of "there is no free implementation available", but more
a lack of algorithm.
In summary, we have already explored what we suggest, and we have
absolutely no hope to make it work in the medium characteristic case.
New ideas are needed.
But, as usual, feel free to investigate more.
Pierrick
On Sat, Nov 30, 2024 at 10:19:22AM +0100, Laël Cellier wrote:
Hi,
In the recent years, several algorithms were proposed to leverage elliptic
curves for lowering the degree of a finite field and thus allow to solve
discrete logairthm modulo their largest suborder/subgroup instead of the
original far larger finite field. https://arxiv.org/pdf/2206.10327
<https://arxiv.org/pdf/2206.10327> in part conduct a survey about those
methods. Espescially since I don’t see why medium chararcteristics would be
prone to fall in the trap being listed by the paper.
I do get the whole /small characteristics/ alogrithms complexity makes those
papers unsuitable for computing discrete logarithms in finite fields of
large charateristics, but what does prevent applying the /descent/even
degree shrinking part/ to medium characteristics ?
Of course, a key problem is no implementation for solving discrete
logarithms in finite fields of small characteristics in near polynomial time
is public (feel free to correct me) and it would take an amount of effort to
bring this to ᴄᴀᴅᴏ‑ɴꜰꜱ that I can’t provide due to lack of knowlwedge.
Sincerely,
- [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?, Laël Cellier, 11/30/2024
- Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?, Pierrick Gaudry, 12/01/2024
- Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?, Laël Cellier, 12/01/2024
- Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?, Laël Cellier, 12/06/2024
- Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?, Pierrick Gaudry, 12/01/2024
Archive powered by MHonArc 2.6.19+.