Skip to Content.
Sympa Menu

cado-nfs - Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?

Subject: Discussion related to cado-nfs

List archive

Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?


Chronological Thread 
  • From: Laël Cellier <lael.cellier@laposte.net>
  • To: Paul Zimmermann <Paul.Zimmermann@inria.fr>
  • Cc: cado-nfs@inria.fr
  • Subject: Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?
  • Date: Fri, 06 Dec 2024 10:42:43 +0100
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=lael.cellier@laposte.net; spf=Pass smtp.mailfrom=lael.cellier@laposte.net; spf=None smtp.helo=postmaster@smtp-outgoing-1603.laposte.net
  • Importance: high
  • Ironport-data: A9a23:FUnT0a37U/BcCWzIqvbD5WN1kn2cJEfYwER7XKvMYLTBsI5bpzAAm 2EbWz3QO/ffYDP0edAnbI62oE0F6p6DyoJrHQI53Hw8FHgiRejtVY3IdB+oV8+xBpSeFxw/t 512hv3odp1coqr0/0/1WlTZhSAgk/vOHNIQMcacUghpXwhoVSw9vhxqnu89k+ZAjMOwa++3k YqaT/b3Zhn8gVaYDkpOs/jf8Uk34qyo0N8llgVWic5j7Ae2e0Y9V8p3yZGZdxPQXoRSF+imc OfPpJnRErTxon/Bovv8+lrKWhViroz6ZWBiuVIKM0SWuSWukwRpukoN2FXwXm8M49mBt4gZJ NygLvVcQy9xVkHHsLx1vxW1j0iSlECJkVPKCSHXjCCd86HJWzz12/RUMkhvBKYR5MwoBWJWy fMdIj9YO3hvh8ruqF66YvJpmtxmK9T3M4QevH4llG+BVrAiSIjEWLnHo9lVwF/chOgXQ66YN pBfMGAzKkWQC/FMEg9/5JYWmO6lgj/0fjlcqV+Pja4++2/I0AE31rXxWDbQUoXSHpsPxx7A9 woq+UzJIShBPsK5kQCX+y+P37LwkSXhapkNQejQGvlC2wfLmTFLUnX6T2CTqvC1jQu4Vcl3M F0R4iNorK4o9UXtQMOVYvGjiGWBogZZXMdMHOo77g7Ik/SMuECdD3ADVSJMLtorqKfaWADGy HfOhsvoPwJm6YS+QGy3qbOXtQ+9PCIaeDpqiTA/cSMJ5NzqoYcWhx3JT8p+HKPdsjETMWyqq 9xthHVl74j/nfI2O7OHEUfvrQjEm3QkZhUw+h2SWX+54QR4YoHgPtLwsh7f5O5HN5qUCF+Mo BDoevRyDshQU/lhdwTUHo3h+Y1FAd7ZaVUwZnYzRvEcG8yFoSLLQGypyGgWyL1VGsgFYyT1R 0TYpBlc4pReVFPzMvQsP9jqV5V0nPW6fTgAahwyRoQXCnSWXFHdlByCmWbJhz+FfLUEzvtjZ cfznTiEUShEVMyLMwZat89Gi+d0m3hkrY8ibY/81RCr1buYaTaOQN843KimMIgEAFe/iFyNq b53bpLSoz0GCbGWSneNreY7cwtQRVBlXs+eliCiXrLZSuaQMD17U6eJqV7gEqQ595loehDgp S3kBBQAlQqk3hUq62yiMxheVV8mZr4nxVpTAMDmFQ3AN6ELON72sPUsZNEscKM59edu6/dxQ rNXM4+DG/lDAHCPsTgUcZC3/sQoeQWJlDC+GXOvQAE+WJp8GC3P2NvvJTX0+Ac0UyGYiMoZo p+b7D39f6YtfQpYMZvpWKqd9G/p5Xk5s8BubnTMOehWKRnN8pA1Cinfjc0XAsArKDfY9wuwy Q3NOxM8oLTJr6QU6/jMv7iP9K2yItt9H21bPmjV1qm3Pi/k5ViewZdMfeKLXDLFXkX287WGS cQM6NrjadsrslpumKhtIYZBlK4RyYPmmO5H815CAn7OUWWONpphBXu3he90qaxHw+5iizucA 06g1IFTBuSUBZnDDlUUGQsCa9aD39Eynh35z6w8AGf+1R9N0Iu3a2dgFDjSt3UFN5pwCp0v/ sk5ss1P6wCftAsjAuzbsg9qrVazPl4yeIR5kKoFAb3bqBshkXBDRp3+NhXYwr+yb/d0D017B QPM2YTjgexHy1vgYkgDMyHH/dBgiKQkvDFIy14/JGq1pOfVu89v3DBs9WUYcwcE6DRGzON5B UZzPWJXO6il3mlllepDbU+WCiBDAxyT1WLuwQAvzF/iElSaZlXMCEYfOu+92l8T3EwBXzpc/ ZCekH3EVxSzdu7P/yICY2xXgN29cs5ArSj5h9GBI8ueOaUDcQrena6lYFQXpyvdAc8egFPNo c9o9r1SbZLXGDExoaphLaWnzpUVFQ65IVJdTcFb/K8mGX/WfBew02OsL2GzYsZ8GOzYw3SnC sBBJtN9aDrm7Xyg9gskPK8rJ6N4uNUL59BYI7PiGjMggoul9zFstMrdyzj6iGoVWO5RqMcaK L7KVje8A2eV1Gp1mWjMkZF+AVCGQ+I4PS/y4OPk198yNcMnkPptekQMwLeLry2rEA94zSm14 iLHRYHrltJH96o9vrHRAp1iBhq1I+zdTO6n0h6+mPUQYMLtMfXhjRI0qF7mNF4PZbA6Asp7p Y6LuoTzwXHU5KYQUUnLv5yRF6JmtNe+c9dKOMfJdFhbgiqwd8v+6DQT+22DCMJokfEMwuKFV geHeM+LWtpNYOhkxVpRcHJ4ATsGLqbKMoPMmHuYkayXKx4/1QfnEouWxUXxZzsGSh5SaozMN ADknt2PuPZald1oLz0ZDahEB5RYHgfSaZE+fYesiQjCX3iauXLciL7MjhF61CrqDEODG8PE4 Z7oYBjyWRCxmaPQxuFirI1AkUwLPUl5nNUPUBoRy/xuhxC+KVw2H+AXHJEFK5NTywjZ9pXzY hPTZ2oDVwT5exl5civH3deyZTfHW9QyOer4KAJwrgnQI22zCZibCbRsyjZ47j0kMnH/xeWgM pcF9me2IhG1xYpzSP0O4uCgx91q3e7e2mlC7HWVfxYe2PrCKe5iOL1d8AtxuejvCMTRjADMO HQ6QmFCTwTiFxaqV8JpY3lOBBxfuj7zp9ntgeFj3/6H07h3DsUZoBE8Bw03+rkKdMMROLNIQ 37rL4dIy37DwWQd4MPFpPpw6ZKZypu38gySKKb7QhYOkue253hP0wbuW8YQZJlKxTOz2G8xW tVhD7bSyahFxI1sNGWq9Dg0
  • Ironport-hdrordr: A9a23:8lMjvatFzWsCLyPGJ5KGzqoX7skDgtV00zEX/kB9WHVpmwKj5r mTdZUgpGTJYVMqKQwdcL+7Scq9qB/nhPlICKgqTNOftUzdyQ6VxeJZnPPfKkPbalfDH4dmvM 8LEpSXUrbLbWSS5vyKgjVQfexQpuWvweSsnOCby39sSAFsZchbgztRO0KfC0ozXhBPAZ80C5 aYj/AomxOQPXEPaYCgH3EARODfp9rE/aiIXTc2Qxou6AzLgjOs9bLgHnGjtXojbw8=
  • Ironport-phdr: A9a23:OXiCrBWVIQIYXCenTZHPwPbxZyHV8KzqXzF92vMcY1JmTK2v8tzYM VDF4r011RmVBtydtaMP07ee8/i5HzBbudDZ6DFKWacPfiFGoP1VpTBoONSCB0z/IayiRA0BN +MGamVY+WqmO1NeAsf0ag6aiHSz6TkPBke3blItdaz6FYHIksu4yf259YHNbAVUnjq9Zq55I AmroQnLucQbj5ZuJrwwxxbNrXdEZ+Rbzn5sKV6Pghrw/Mi98ZB//yhKp/4t68tMWrjmcqolS rBVEDspP2cp6cPxshXNURWB7WYGXGUMlRpIDQnF7BXkUZr0ryD3qOlz1jSEMMPvVbw7Viis4 KltSB/zlScILCU5/33Nisxxl61UvhSsrAFizoHOYYGVMP1+fr7Bfd4fWGFMUNpdWzBHD4ihd IYEEfYPMvhEoIn8v1sOrAWxBQ+wBOP01zREgmb60bAm3+g9FA3L2hErEdATv3TOtNj7OrocX uK2w6fI0zvOcfxZ1ivm5YfSbhwtveuBUa5sfcfTz0QkCgPLjk+XqYzgJz6b0P4CtHSf7+F9S ++glWonqwVwojex3Mcnl47EhoYPxV/a8SV12po6KsO8SE5/YN6rDoFQujqeN4RsWsMiRHpou DokxbEcv560YjQKxY0hyhXCZPOJb5KG7Qj/VOaNPzh4nnRldaq7ihqs80WuxezxW9W13VtOo SRLncXAuH8N2hHN68WKRPpw8Eeh1zuB0w3e9+9KL080m6fZNpIs37E+m5kRvEnMGCL9hUb4j LeOe0k5++Wk9/7rb7H4qpOGKoN4lA7zPr4ql8G8Geg1MRYCU3Ka9Om9zrHv40z0TK9XgvAyl qTUto3RKNofpq6kGA9Vzpgs6wyiATen0dUXg2EKIE5DdRmalYbmIUvOL+r9Dfqng1SjjjNrx /feM736B5XNMmDDnK7mfbZg905cxw0zzdFZ55JbE70NPfP+VlP/udDCCh82KRS0w+H8CNVhy IwSQ2SPDbGFMK/KsF+I4PwgI/WUaYMIuTvxN+Ip6vrwgXMjhFMRY6ak0YETZX27BvhmJl+WY XvogtcPC2cKuQ8+QfTuiFKYTzFTY2y+UL4i6TE/DIKmDJnMRpq2jbyFxii7BppWZntaCl+SC 3vocZuLW+sUZCKUOcBuiiYEWqS5S489yRGusxf3x6d/IurO5iIYrY7j1MRy5+DLiR497yF7D 8OE32GLQWF0hXgFRyQ23aB6uUxy0E2P0al+g/xCFNxc/elFUgkgNc2U8+svM9nvXkrzf9KMR UyjS9OgSWUJR881he0PZkNwAdCriBbr3iywArZTmabdV7Iu9aeJ+3FyI45WxnLC1aQ7xw0iS 8ZLc2argqp++hL7A4fRlF6FmuCseLhKj32Fz3uK0Wfb5BIQawV3S6iQGClHPiM+zPz870LGF Pq1DKg/dxBG0YiEI7dLbdvgiRNHQu3iMZLQeTH5gH++UDCPwL7Ed4/2YyMFxiyIDEEJl0YY8 HKCNAUkLiOou2XFEDEoE1/zMAv36ecrkHqgVQcvyh2SKUho1r674BkQ0PiVRvdV1b8AvCYss R1wFU66xM7bTdyNu1kpZ71SNPU65loPzmfFr0p9M5inerhlnUIbeh9rslnGzBBrEsBHjNQlq 3Isw08rd/rDlldIbzSDwZ22PLDLQoXr1DaobaOemlTX0dLNv7wK9Ox9sFL7+gegCksl9Xxjl dhTyXqVoJvQXkIUVtrqX0A7+gIfxfmSazQh547SyXxnMLWl+j7E1dUzAeI5yxGmN95BOaKAH QX2HoUUHc+rYOAtnlGoaFoDMoUwvOYwNs6iMfCL3KqqMfxImDu+in9b7cZ7317NvytwR+jU3 ooUlumC11jiNX+0h1Ogv8br3IFcMGhMRizuk269XtIXN/0hGORDQX2jKMC22Nhk0pvkWnoDs UWmG0tDw8ixPxybc1362wRUk0URu32u3yWinFkW23kkqLSS2CvWzqHsbh0CbyRPTWRmy1zhJ Yy1gsoyWEGwaBM1mV2j6FqwlM057OxvanLeR0tFZX28K2hvVu27u76GYsNVwJchqSJMTOn6Z 12GAO2YwVNSw2boGG1Qwyo+fjeht8DinhB0v2maKW56sHvTfcwYKQ733NXHXrYR2zMHQHI9k jzLHh2nOMHv+9yIlpDFu+T4VmS7V5QVfzO5hY+HsSK64yVtD3jd17i3k9DjVwM31Sv62sNCU SzQqw3gb8/t2rjyPe98f0ZuDUPx8IIjRNk4w9F23ctMnylKzpyOmBhP2X/+K9Baxb7zYDIWS DgHzsSUqAnp1Ut/L26YkofwV3GT2MxkNJGxZmIb3D547tgfUfnMqu0e23Iv/hzp/VG0A7A1h DoWxPow5WRPhugIvFFo1SCBGvUJGlEeOyXwlhOO5tT4raNNZW/pf6LjsSg21d2nEryGpRlRH XjjfZJ3Vyt548E5O1/I1Hz+8KngccHXds4e8BuZj12T6oodYIJ0jfcMiSd9bCj5tHAhjeU2i Rhv0IuSuIGfLH5x8eS/DwISZViXL4sDvzrqi6hZhMOf2YuiS45gFjs8V5ztVfu0ETgWuKevJ 0OUHTY7sHveBavHEFrV9hJ9t3yWWcPOVTnfNDwDwN5lXhXYOEFPnFVeQmAhhpBgXgGymJ64L h8/t2pXvwSk7EUQjbg2fXETS0/5owGlIncxQZmbd19N6x1aolzSKYqY5/5yGCdR+tugqhaMI yqVfVYAC2ZBQUGCC135W9vmrdDd7+iVAPa/JPrScP2Pr+JZTfKB2ZOo1MNv4T+NMsyFOnQqA ec83wJPWnVwGsKRnDtqKWRfjyXWc8uSvwux4AVsq9yntfP2RA3o5I2ATuIMaY4p/xmuhryfO qiWiTo4YTdU25UQxGPZnbgS2FlB7kMmPzKpELkGqWvMVPeJxPcRXkRdMnkvcpoYvMdelkFXN MXWi834zOt9h/8xUBJeUED539qufYoMKn28M1XOAACKMq6HLHvF2ZKSA+v0RLtOgeFTrxD1t yycFhqpOj2Ok3/iWhSrMOxWpCWSJBtFpIz7dBtxQzuGLpqueligPdl7gCdji6UznW/PPHUAP CJUaEZRtviX8D9XhfR5FCkYsCI+a+2NgyGC8+SeLJsK+6gOYGw8h6dR53I0zKFQ5SdPSalum SfcmdVppkmvjuiFzjcPuP9mrj9Tg5mXsANkNLmLrvGouF7f+Q4VqGKNFxsNpt1qT4Sx4/sWz tHXk7nvJXFE/s6GpaP06ODQIdqAK2YsdxzkBGyNZDY=
  • Ironport-sdr: 6752c725_hqQVF+VeOIFJzMHwCBok00hJ7627yKJ0medBhQvyaeNVvyo JmPAQ5qElUc7VowzvjvGCHdpl+rcahavUBua7rg==
  • Savedfromemail: lael.cellier@laposte.net

20 years ago, I was a tiny child😀. 20 years ago, Microsoft was still fully closed source.
I can t experiment with the quasi polynomial algorithms for discrete logarithms. Espesically with the elliptic curve part.

Sincerely,

-------- Message d'origine --------
De : Paul Zimmermann <Paul.Zimmermann@inria.fr>
Date : 06/12/2024 10:26 (GMT+01:00)
À : Laël Cellier <lael.cellier@laposte.net>
Cc : cado-nfs@inria.fr
Objet : Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?

       Hi,

> also, I’m a student. like many, I need to experiment to understand and
> that can’t be done if I don’t have access to an implementation…

20 years ago, there was no open-access implementation of NFS available,
thus students had to start from scratch to make experiments.

Nowadays you have access to at least CADO-NFS, which is a real chance
for students like you. Feel free to try your ideas on top of CADO-NFS
(or to compare your implementation to CADO-NFS).

Paul Zimmermann



Archive powered by MHonArc 2.6.19+.

Top of Page