Skip to Content.
Sympa Menu

cado-nfs - Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?

Subject: Discussion related to cado-nfs

List archive

Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?


Chronological Thread 
  • From: Laël Cellier <lael.cellier@laposte.net>
  • To: cado-nfs@inria.fr
  • Subject: Re: [cado-nfs] In finite fields of medium characteristics, what does prevent shrinking the field size of even degrees down to their larger order in order to solve discrete logarithms ?
  • Date: Fri, 6 Dec 2024 09:36:17 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=lael.cellier@laposte.net; spf=Pass smtp.mailfrom=lael.cellier@laposte.net; spf=None smtp.helo=postmaster@smtp-outgoing-1603.laposte.net
  • Ironport-data: A9a23:+ViDzKgndvaDGYS1eIQgZfEVX1610BQKZh0ujC45NGQN5FlHY01je htvUGGDaPqCa2X2eNh+PoS3ph4GsJSGztMxTlA9qi1gQyxjpJueD7x1DG+gZnLIdpWroGFPt phFNIGYdKjYaleG+39B55C49SEUOZmgH+a6UqieUsxIbVcMYD87jh5+kPIOjIdtgNyoayuAo tqaT/f3YTdJ4BYqdDtOg06/gEk35qir4mtG5gVWic1j5TcyqVFFVPrzGonqdxMUcqEMdsamS uDKyq2O/2+x13/B3fv4+lpTWhRiro/6ZWBiuFIOM0SRqkQqShgJ70oOHKF0hXG7JNm+t4sZJ N1l7fRcQOqyV0HGsLx1vxJwS0mSMUDakVNuzLfWXcG7liX7n3XQL/pGBnhxLKFG1/xLLnhKq t4xbxQtSTWTrrfjqF67YrEEasULN8z3JMYYp21vyjDfArN/H8iYBaHD/dhDwDp2gM1SdRrcT 5NHMXw+NlKZOUEJawd/5JEWxI9EglH7ejBc7lmYoa427nL7yAVp16PxPZzTd8DiqcB9xxfH+ DKXrj2kav0cHNet9wvV/Ff3v9/Ot3LDZ4MZDrGG/Nc/1TV/wURIUkVJCAPhyRWjsWa1Ut5Yb koa4QI1vK0q/QqqSMP8Vlu2uha5UgU0QN9MC6g99R2CzavS7EPAWDBfCDpIcNs9qMJwQzE2v rOUoz/3LTZW96y5F1+HypiNqWyQEG8xDUgndQZRGGPp/OLfiI00ixvOSPNqH6i0ksD5FFnML 9ai8XJWa1I70JVj6kmrwW0rlQ5AsbDndGYICuj/RWe59kZ+eZKqYI2u5h2Cs64baoKQVl6ao HVCncWChAzvMX1vvHLTKAnuNOj3jxpgDNE6qQI2d3XG32j0k0NPhagKvFlDyL5Ba67ogwPBb k7Joh9275ROJnasZqIfS9vuUJ92l/O8RIq0C6q8gj9yjn5ZKlbvEMZGOxT44owRuBF0zsnTx L/EK5rwXR7294w7kmTrLwvi7VPb7ntknTyOHcqTI+WPzr2EYHKRSLEIeECHBt3VH4vayDg5B +13bpPQoz0GCbWWSnCOreY7cwpWRVBlXsqeg5IMKYa+zv9ORDtJ5wn5nel5I9QNcmU8vrugw 0xRrWcCkgGg3Sacc17TAp2hAZu2NatCQbsAFXREFT6VN7ILOO5DNY9GL8JrL4o0vvdu1+B1R PQjcsCNSKYHADfe9jhXKdG3oIV+fV75zUiDLgi0UggZJpRAfg3u/sO7Xw3N8CJVMDG7m/Fjq JKd1yTaY6E5eSJcMOjsZsmC8XaNrFkGuecrX0L3MthZI0rt145xKh3OtPw8IuBSCBPl2je6/ hqcWilAl7Ocu4Uw+8XsuZGbipb0CNpONFRRRFPfybPrMSXx33GCxLVYW72iZgHtV2LT+YSja 95Kzvr6DuY1oVZSv6d4EJdp1agY5dD/g5N7lyNPAyztQ3qnLphCM0u295BDmYMVz4AIpDbsf FyE/+drHImgOeTnIQY3HxUkZOHS7sMksGDewtptKXqr+RIt2qSMVHhTGBy+iCZ9Cr9RG6F9y McDvP8m0SCOuiAIAP2n0B8Nr3+tK0YeWZoJrpsZWY/nqjQ6w2F4PKDzNHXE34GtWf5tbG8RP T6mtIjTje99x23DUUYJO1rj4O5/vakK6Td2lAIsBlLRgdfUpO4F7DsI+xQNcwll5BFm0eVyB 2tVC3NINZi+pwlPuswScF2vSidgBQKY8HPf01EmtnPUZGj2W33vLF8SA/es/kcY+U1yYTIA2 umq8zv4YwbTfeXa/Cg7aWh6odPNEP1z8Qzjnpi8PsKnRpMVXxvsspWMV0Ep9ST1MJgUv1LWg 9Vl58BMUL3LDjERqKgFFIWq77QcZxSaLmhkQ/s63qc2MUzDWTO1gx6iFluQf55TGvn07kOIM cxiCcZRXRCY1izVjDQ6B7YJEoBkjswS+9sOVbP6F1Eo64LFgGJSj6vR0SziiEsAYdZky589I 7yMUQOyKDWbgH8MllLdqMVBBHGDXuAFQw/Bx8GwzvQCEsMSkeNrcHxq6ICOgVeuDFJF8S6X7 ST5XI2H68x5yI9poZngLbUbOSWwNuHIdbqp9CKdjo1wSO3hYOb0mSEbkF3FBzhtHKAwXo13n IudsdSs00Liuq03Yl/jmJKANvdo4NWyV8UGIM7YEWRQmBXaec7z4iks/3KzBoxJneh8uOimZ VqcQ+mheeEFX+xywCVuVBFfNBIGUYLlQ7zFpx7hi9ixUj0jiRfmKvGj/l/XNVBrTDcCYcDCO 1WlqsSQ6cB9h6USIh09XtVNIYJyeX3nUosYL+zBjyGSVDSUswnTq4nZtEQS7B/QASO5C+f82 5XOQyb+eDmUuK3lyNJ4sZR4jiYIDURS0PUBQUYAx+FY0zyKLnYKDeA4A6U0Dpt5li/T1pahQ BrvaGAkKzv2XBUaUBHazengYDyiBb01Co+kHgAqwkKaVX7nTsfISr5s7Txp7HpKayPuhrPvY 80X/nrreAO92Nd1TOIU/ea2mvpj2uic/H8T5EThiIbnNn7y21nROKBJR2KhlBArEv0hUG3QI HQtAGdZXE68SEj+VJ8+IyUTHBgBuyjzwnMuYDvnLBMzfWmE5LUo9RE9E7ibPn4/gAAiILcWQ mjrSi2L7nz+Nrk7p/4yo9xw6UNrIavjIyV5RZMPgSUWlrm38XgqecUPgULjiS3kFBF3Szvgq 9Vn35Ty6Ilp5qycNH16BDjlI65Mb08=
  • Ironport-hdrordr: A9a23:JFksDqkmWkUnlZgH08NYkCBs0EHpDfLK3DAbv31ZSRFFG/Fw5P re5cjzsiWE9wr5OUtQ5exoXZPwP080mqQFgrX4o9+ZLXPbUQeTXfpfBM7ZskDd8k7Fh4xgPM VbE5SWYeeYZTIasS+52njfLz9K+qjizEnHv5a4854gd3AOV0ga1XYANi+rVkhuQ01DDZo9FJ 2Tj/AqmxOQPXEPaYCgH3EAWuTdq9ijrvzbSC9DAgchrBOWhTey4KP7FBbw5HgjegIKxb8j9C zLkwnl6r6v2svRpyPh6w==
  • Ironport-phdr: A9a23:D0os+RCR2Ov4owkYnjamUyQUbUkY04WdBeb1wqQuh78GSKm/5ZOqZ BWZua40ygGZFtyCuroE07OQ7/u4HzRYoN6oizMrTt9lb1w/tY0uhQsuAcqIWwXQDcXBSGgEJ vlET0Jv5HqhMEJYS47UblzWpWCuv3ZJQk2sfQV6Kf7oFYHMks+5y/69+4HJYwVPmTGxfa5+I A+5oAjfq8Uam4pvJ6U+xhfUv3dFf/ldyWd0KV6OhRrx6cm98IJ5/yhMp/4t8tNLXLnncag/U bFXAzMqPnwv6sHsqRfNUxaE6GEGUmURnBpIAgzF4w//U5zsrCb0tfdz1TeDM8HuQr86RTqt7 6FwSB/1kygHLCI28HvWisNrkq1Wpg+qqgFlzI7VZIGVM+d+fr/YcNgHS2dNQtpdWipcCY66c oABDfcOPfxAoof+qVUBohWxCxSyCuPh0DFGhmf40q8m3OouCgzGwBUgEsgSvHjIsdn4NqEfW v21wqnSyjXDautb1zHn54/UdhAqvO+BUqx0ccrVyEkgCRnFhUiXpIzhJTyayOANv3KH4OV+U eKvj28npB9rojW0wscjkJHJhoUOylDY6yp12oA1KsOkSENiZ9OvDZRfuT2AOYRsXsMiX39nu Dw8yrAeuZC2cykHxpsoyRPDa/KLbYqF7x3tWeufLzl1mW5odb27ihiy70Ws1+3yW9W73VtKs yZJjNbCu3MN2RHO5cWKVv1w9Vqv1zaI0gDc8OBEIUYsmKXBMZ4gzb8wloQJvUTEBC/2l0P7h 7KVeEU84uWk9uXqbqn8qpKYKYN4kBzyProhl8ClBek1MRACUmuF9eim1bDu/Ff1TKtLg/Esj 6XUtJTXKMIGraOnBw9Vz50j6wqhADe8zdoYnHgGI0xddR6biYXiJkvAL+riDfilhlShiDdry O7CPr3mGpjNNX3DkKv5fbpk7E5c1RYzzd9Y55JVDLEBL+v/VlLwudDEABI1KQi0zPz/CNV6z YMeRXyADrWfMKzMrV+E/uMvI++Sa48JoDvxNvko6+L0gXI9h1MRZ7Sl0YUYZXyiGvlrIF2VY X/2jdcAFWcKsBA+TOvviFCaVT5cfWi9X6Ym6j4nFo2mCYPDRoGzj7ybxyq7GodZZnhBClCXD XfnaZ+IW/ESZyKOOsNhlCcLWqC7S4A9zRGuqBP6y71/I+bJ4iEYr47s1MBp5+3PkhE/7SB7A N6A3GGKVm10mG0IRyQt0aBkoU19z0+D3rJij/xZE9xT/fJJXR0gOZ7S1ewpQ+z1DwnIctDMT li9atSgGzA4CNwrkPEUZEMoP9whiljo0i6uArIP3+iPDZEwtKnR23zwKtxVz3/e07I9gh8gT 9cZZj7uvbJ26wWGX92BqE6ejav/Lcz0vQbI/WaHly+VuV1AFRR3WuPDVGweYU3fqZL44FnDR vmgE+dvKRNPnOiFLKYCcdj1lRNeXv62PN3TZyS6lmO0BBuS7reFdI3xZ2hb2ijBWwAfiw5Gx X+dLkAlAzu55WfXDThgD1XqNkfl/O04o36/Sk451SmOZlVmzKa4vBgYma/UUOsdi5QDvipps DBoBBC90tbRXsKHvBZkdb5AbMkV+1JbzSfeqhByOZ2mIOU72AZFNQB+p0T1yxgxDIhc+SQzh FUtygc6aaeR0VcbMiidwYi1ILrcbG/74BGobafSnFDYytefvKkVurw+rB34sQelG1BHkT0v2 sRJ03aa+pTBDRYDGZP3XEEt8hFmprbcKiAj7oLQ3HdoPOG6qDjHk94uAeIkzF6ncbI9eOuAH QL2VcYXA8yvJfYCn1GxaQkYMaZU+bJ1d8Kqev2a2bK6af56lWHD7ywP64R830SQsitkH7eWh 9BUmbfBhFfBBmev6TXp+tr6ko1FezwIS2+2yCy+QZVUerU3Z4EAT2GnP8ywwNx6wZ/rQX9Rs lC5VDZkkIekfwSfa1vl0Ehez0MS9DajkCa8iTd5lzUoo7C32CXWxP/+eVwBN3IBFwwAxR/8Z JO5idwXRh3iawEkkF2u6EL+xqVBjKB2N27IXUoOeSXqZTIHMOP4pv+JZMhB74ktuCNcXbGnY FyUfbX6pgMTzyLpG2Y2KCkTTzixod25mhV7jDjYN3NvtD/Dfso2wx7D5dvaTPoX3zwcRSA+h yOFTlS7OtCo+52TmfKh+qi6Xm+lEJZedS3qwJmosCKj4nZ2DFu5kuz7ltD8EAc82DP2zJEzC 32O/Uy6O9O3kfXqeet8GysgTEfx8c97Bp1znsMriZcc1GJbzpSZ8HwbkHviZNBS2Kbwdn0IF nYAx9/Y5hSg2VU2dyzRgdOjECzHno0wN4rfACtewC824sFUBb3B6bVFmXEwuV+ktUfLZvM7m D4ByPwo4XpcgucTuQNrwD/OZ9JaVUReIyHokAyFqt6kq6ACLmKmfLz230d6mdGsFpmGqxlbQ 2r0PJEvAWUji6c3eEKJy3D15oz+LZPUZN8X8BaZlxPBgvJ9LJspkeEWiGxhNH637hhHg6Yry Bdp25+9po2OLW5gqbm4DhBvPTrwf8oP+zvpgPUWjoOM0ouoBJkkBiQTUc6iU6ezCDxL/6eCV U7GAHgmp3ycA7aaAQKP9BIssSfUC57yf3CPeCtAk40kFUPbfRYDxl5IG29k1PbVDyiMw8rsO Ad87zEVvBvjrwdUj/hvPF/5W3veowGhbnE1ToKeJVxY9FMK4UCdKsGY4u9pekMQtpS8sAyAL HCabAVUHCkIXEKDHVXqIrip45HJ7eGZAuO0K/aGb6+JrKRSUPKBxJTn1YUDnX7ELsKUInxrF OE2wGJYWGxhXsPEhzoISioY0nuTN5XdoB6k/TZro4a5/eiqEAPj6I2TCqdDZNVi/xfl5MXLf +WUhSt/NXNZzsZVmyeOmeJZhQROzXA+JFzPWfwauCXATbzdgPpSBh8fMWZoMddQqrg71U9LM NLajdX80vh5iOQ0AhFLTw+E+InhaMoULmW6LF6CClyMMeHMITTGx4f8bKe4SLBKpOFdrxqrp TvdFUL/dGfm9XGhR1W0POdAgTvOdgRZo524ew1xBHLLV9f6cli8LcN4ijwwzvht2CuRc2oVK T9nb04LqLCMp3A94L03CylK6XxrKvOBkiCS4rzDK5oYhvBsBzx9i+NQ5HlSI1p99yRYXLlyh Tfdqd9orBT/zLHUjD5uSB1VtjsNgo+X7x0K0Urx8pBYXm3Y8VQL4HnCUnziQvNhA8XooLxdj N7CiPCrQAo=
  • Ironport-sdr: 6752b781_S7Qz6TDra5NDmCWX3KBEzzWq+NkkR2HipjU8PW8tzKljIVu EfLejNImZSXJmbI9vf2wEeSDzD2oaUclz2qFc/Q==

Hi,

also, I’m a student. like many, I need to experiment to understand and that can’t be done if I don’t have access to an implementation…

Cordialement,

Le 01/12/2024 à 15:18, Pierrick Gaudry a écrit :
As you say, the techniques used in the family of algorithms with
quasipolynomial compexity are dedicated to small characteristics. They
have a O(p), at the very least, in their complexity, which makes them
completely useless in what we call medium characteristic. And this is not
a matter of having no access to the implementation: it's really about the
algorithm not working efficiently in that case.

As for using elliptic curves in this context, actually the idea was first
considered a long time ago, precisely in the medium characteristic case, by
Couveignes and Lercier:
https://arxiv.org/abs/0802.0282

Unfortunately, no practical speed-up is to be expected. And again, this
is not a matter of "there is no free implementation available", but more
a lack of algorithm.

In summary, we have already explored what we suggest, and we have
absolutely no hope to make it work in the medium characteristic case.
New ideas are needed.

But, as usual, feel free to investigate more.

Pierrick

On Sat, Nov 30, 2024 at 10:19:22AM +0100, Laël Cellier wrote:
Hi,

In the recent years, several algorithms were proposed to leverage elliptic
curves for lowering the degree of a finite field and thus allow to solve
discrete logairthm modulo their largest suborder/subgroup instead of the
original far larger finite field. https://arxiv.org/pdf/2206.10327
<https://arxiv.org/pdf/2206.10327> in part conduct a survey about those
methods. Espescially since I don’t see why medium chararcteristics would be
prone to fall in the trap being listed by the paper.

I do get the whole /small characteristics/ alogrithms complexity makes those
papers unsuitable for computing discrete logarithms in finite fields of
large charateristics, but what does prevent applying the /descent/even
degree shrinking part/ to medium characteristics ?

Of course, a key problem is no implementation for solving discrete
logarithms in finite fields of small characteristics in near polynomial time
is public (feel free to correct me) and it would take an amount of effort to
bring this to ᴄᴀᴅᴏ‑ɴꜰꜱ that I can’t provide due to lack of knowlwedge.

Sincerely,



Archive powered by MHonArc 2.6.19+.

Top of Page