Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points


Chronological Thread 
  • From: KL <>
  • To: "" <>
  • Subject: Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points
  • Date: Thu, 07 Jul 2022 10:13:06 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Envelope-from:
  • Ironport-data: A9a23:SsE73qPKPOGXwPvvrR19kcFynXyQoLVcMsEvi/4bfWQNrUpzgT0Hz GFODG6EafeJa2Gjfd52YIiyp0JS75PXyoA1SnM5pCpnJ55ogZqcVI7Bdi8cHAvLc5adFBo/h yk6QoOdRCzhZiaE/n9BCpC48T8kk/vgqoPUUIYoAAgoLeNfYHpn2EgLd9IR2NYy24DmW1zV4 LsenuWGULOb824sWo4rw/nbwP9flKyaVOQw4zTSzdgS1LPvvyF94KA3fcldHFOkKmVgJdNWc s6YpF2PEsw1yD92Yj+tuu6TnkTn2dc+NyDW4pZdc/DKbhSvOkXe345jXMfwZ3u7hB2ih49ak tx9lKafRCNyHPaUlbUMUBVxRnQW0a1uoNcrIFCxttaMxlfKLiO0wbNrBUAye5wR/Op6ESdI+ OBwxDIlM1bf2qTvkeL9ELQ07iggBJGD0Ic3tnxrymqCVa5+aYHKRanH9ZlT2zJYasVmRKaBO ZtEMWEHgBLoegEMIlJJB7wHrMyXn3nybSQA816Euv9ii4TU5FYqjeC0WDbPQfSBSsxR20qZv Wnb5H/RGQAfLNXZyDyf83vqiPWnoM/gcIwVDqKx7PI32AWRgGkaCRlQRFK9rfSpzEizR7qzN nD45AIFtfcZrkWbb+PSUjnjgiXcs08NWNZ5RrhSBB629oLY5AOQB24hRzFHacA7uMJeedDM/ gHV9z8OLWIw2IB5WU5x5Z/J8GzpaXZ9wXsqPnBaFVVVizX2iNhr1kqnczp1LEKipufIcQwcL hiEqzIhjq8f0JZT1eO+9FHDxSOloJTEXkgz6xm/soOZAuFRO9PNi2+AsAizARN8wGCxEwDpU J8sxpP20Qz2JcvR/BFhuc1UdF1T296LMSfHnXlkFIQ7+jKm9haLJN4Nv2glfh0zYpxVJFcFh XM/XysPuve/21P0PMdKj36ZV6zGMIC5RIW0Da68giRmM8ggHON4wM2eTRTLgji0+KTdubA2P 5uWYY6oCX1yNEiU5GXeegvp6pdynnpW7TqLG/jTlk37uZLDOiL9YepbYTOmM7BohIvZ8V692 4sOZ6OilU8AOMWgOXO/2dBIcjg3wY0TXs2eRzp/LbLYfWKL2QgJV5fs/F/WU9U6xPsJzraUp SDVt40x4AOXuEAr4D6iMhhLAI4Dl74mxZ7iFSBzb1uuxVY5ZoOjsPUWe5ctJOF15eVlwfNkC fICfpzYUPhITz3G/RUbbIX8/dQ8Kkz621rWMnr3eiU7cr5hWxfNpI3pcw7pwzUDU3isvswkr rz/hw6CGcgfRx5vBdr9Ye60yw/jpmAUne9/BhOaItRadEj23pJtLij90q0+L80WcE2R1zKc2 wuGRxwfoLCV8YMy9dDIg4GCrpuoQrMgQBILQTGD4O/vZyfA/2elzYtRa8qyfGjQBDHu5aGvR eRJ1PWiYvAKmVB9r4chQa1gyrgz5oS+quYCnBhkBnjCc3+iFqhkfiudxcBKu6BAmu1ZtA+xV h7d89VWI+/Was3iCkEYPgZ4NryBk/Qdmz2U/P0zLEjqoil64OPfA0lVOhCNjg1bLad0Ydx5m Ld84JdL5lztkAcuP/aHkjtQqzaGIEsGXvh1rZodGoLq1lcmxw0Qe5DaESOqspiDZ88WbRskJ SWLjbDO2uwExAzHens3U2nE2+ZQldIItQwTlA0OIFGAm9zkgP4r3UwOrW1nE1wMkxgXgfhuP mVLNlFuIfnc9TlfgsUeDXunHBtMBUHE90H8o7fTeLY1k6V6uq3xwGwB1SKl8kcD7GtGcmUDp LPezW/kVXD7dcf90zt0X0N5wxAmoRqd6SWa8P1L3ezcd3X5XdYhqr6nY2YFu13sBsZZaIjvu 7xx5OgpAUHkHXd4nkD4YrV2EZwBQRaIKXwESvZklE/M8acwZxnqsQWzx4uNlg+h6hAEHYJUy yCjGy6XaymD6Q==
  • Ironport-hdrordr: A9a23:zUavsK+gnvx5fv2z4eluk+AEI+orL9Y04lQ7vn2ZKSY7TiX+rb HUoB17726PtN91Yh0dcL+7SdC9aF/a6pJx55AceZi4Wg2OgguVxe1ZjLcKhgeQeREWldQtsp uIDZIOcOEYZGIS5a2RjjVQUexQpeVvm5rY4ds2oU0dLj2CE5sQiTtRO0KqGkp6SBgDKoQ1fa Dw2vZ6
  • Ironport-phdr: A9a23:YAVJZBQZCNIDMb+FFv4+VzDV29psoueWAWYlg6HPa5pwe6iut67vI FbYra00ygOTBsOCta4P0rCH+4nbGkU4qa6bt34DdJEeHzQksu4x2zIaPcieFEfgJ+TrZSFpV O5LVVti4m3peRMNQJW2aFLduGC94iAPERvjKwV1Ov71GonPhMiryuy+4ZLebxtGiTanfL9/L Rq7oQrMusUIhYZpN7o8xAbOrnZUYepd2HlmJUiUnxby58ew+IBs/iFNsP8/9MBOTLv3cb0gQ bNXEDopPWY15Nb2tRbYVguA+mEcUmQNnRVWBQXO8Qz3UY3wsiv+sep9xTWaMMjrRr06RTiu8 6FmQwLuhSwaNTA27XvXh9RwgqxFoh2hqQFxzIHTbo+bN/Rwcb/ScMgaRWVaQspdSzZMDp++Y oYJEuEPPfxYr474p1YWqBWwAxSnCeTyxTBWmnD22qM33uo9HQ3awAAtBNIPv27SrNroKqgTX vq5w7XPzTXGdv5b3yr254fUfB47u/6MQa5wftTLyUkpDw7IjUicpIzqMT6byukAsGqW4utjW O6zimMppRx8rzmuy8oul4XEgoEYxk3A+Ch6wos4J961RUF7bNCkDpdduD2XOo1rSc0sRGFov Tw1yrwAuZOjfSgKzo4nxx/FZPCdfYiI+BTuX/uSLzdgnH9oeKizihmy/ES61+HxUsq53ExUo idFjtXArm4B2AbP5sSZT/Zw/1yu1DWK2g/P9+1IP0U5mbfHJ5E7zL49k4YfvEHCEyL5hEn7i aGbeV8n9+S27unoeKnqq56CO4JylwrwKL4hmtalDuQ9KgUOX3aU+eC71LD78035R69Kj/Msn anDrZ/XJdgXqrK7AwNP14Ys8Re/DzO83NUYh3YHKk9KdwyIjoTzPVHBPuz4Ae++g1Sqjjhr2 +jLM737DpjCLnXPiqrtcLJ+5kJG1gY+zcxT64pRCr4bIfLzXkHxtMbfDh88KwG73vjoB8l61 o4QV2+DHrOVPL/JvF6I/O0vJfSDa5EauTrnN/cl4PvugWc/mVAGZaapx4cYaGikHvR6JEWUe Wfgjs8bEWgWpgo+UPDqiFqaXDFPaHa9RaY86igmB4KnFofMWp2tgKea3CqgBZ1XZmVGCkiWH nvydoWEXe0MaCOILcN7nDwET+vpdok6yBv7tBPm06E1aa3P6ygAvNTi0sJ07qvdj1Yp5DlsB oOc1W+KCGp7l2dNSz4t171kuh9AzEye24hkhvgNFcBP/+gbFUAhJJvExqp7DcrzU0TPZJCSW VO+S5KnBz82Cdk+yttLb0dmEMi5lUP/2H/gCLAck/mHBYc/77nH93n3Pcd0jXjcnuF1hFYvR o5DNHatm7Vk3wnVHY/A1UuDwfWEb6MZiQ3pvDOPwGGJ5xoACFZYQKzDUX0PIEDRqIKqtQv5U 7ayBOF/YUN6wsmYJ/4SAjWIpVBPRfO4fc/bf3r0gGCoQxCB2rKLaoPuPWQbxiTUTkYewEgI5 XjTEw84C2+6pn7GSiR0HAfjbkjrqrIm8CuTX0YywwyaKUZm0un94QYb0MSVUOhbxbcYoGEko jRwEky62ofaBtGH/FE5JP10cNo77FpXk2nesl81JYSueoZlgFNWaAFrpwXu2hFwX51HitQvp Wg2wRBaJ6WCz1pbe27AhZK2P7TWLi/j9RajZr6Q3FzCuDqP0oEI7vlw61DqvQXyU1En720iy N5NlX2V+pTNCgMWF5P3SEc+sRZg9fncZWEm6oXY2GcJU+H8uyLe298vGOouywqxN9ZZPqSeE QbuEsocT8GwIe0uklKtY1oKJudXvKIzOsqncbOB1svJdK5skTmh1j8fuNhVw0uK+ydsDOXP2 tdNwv2V2BeGSyaplE2o4Yj8nYFJYy1XH3LqlG64WcgIN/00J9tTWgLMa4Wty95zhoDgQStd/ V+nXBYd3dOxPAGVdxr71BFR0kIepTqmnzG5xnp6iWJMzOLX0SrQzuDlbBdCNHRMQTwogVrnJ tPv14hCdFmhaQQkhF2u4kOwlM057OxvanLeR0tFZX28I2xpVfDr7uLaS99G7p8loWNcV+H2M jX4Avbt5hAd1S3kBW5Xwjs2IiqrtpvOlBt/kGuBLXx3oRI1YOlIzAzErJzZTP9VhX8dQTVgz CLQHh66NsWo+tOdk9HCtPq/XiSvTM8bfS7uxIKG/Cy1gA8iSRGylPfowYW/SSAr2Cn32sksX iLN5BrxeYjk0a2mPPkvIw80WRmlupo8QNwm2oIrzIkdw30bmomY8R9l2S/oPNNX1Li/JHsBS DgXwsLEtQ3s2UltNHWMlMryUnSQxNckZsHvPyVKh2RkvpAMUvrMv9km1WNvr1G1rBzce614l zYZkr417WICxvoOoEwrxzmcBbYbGQ9ZOzbtnlKG9YPbzu0faWCxfLy3zEc7k8qmCeTIrgxXX y2iIs96NT556MlyIBTH13i5ueSGMJHAKMkesBGZiUKKg+VeL8lqzqJSrTtuP27wrTsuzOtx3 nkMldmq+YOALWtq5qewBBVVYyb0a80k8Tbola9Cn8yS0tPnDtB7Fz4MRpetUeOwHWdYq6H8L wjXWm5ZyD/TCf/FEASY8ksjs3/fD8XhKSSMPHdAhdR6GEvHfRcZ2VBMGm9gxdhgR1rtnpKEE g8x5yhNtAWn7EoKk7o5cUG4CDuXpR/0OGxrDsHDdFwPtFEEvwCMYYSf9r4hQmcEo9v4/VbLc ivCNmEqRSkIQhDWWha5Y+TovIiatbDfX7r2LuOSM+rR77wOEa/OndX2gsNn52reZprJZCQ6S adhhgwbGikofqaR0zQXF35GzGSUMp7d/UzivHEn6ZrvuPXzBFC+uM3WU+sUaI43vUjx2/zLN vbM1nckb28AhtVVlCWOkP9GjDtww2lvb2X/SOhZ836LFfmK3PcQVUJTajsvZpYOs/96hFQRf 5ac0I69wLd8irRd505tc1vnl4npYMULJzr4L1bbHAOQM6zAIzTXwsbxaKf6SLtKjewSuQfi8 TCcW1TuODiOjVyLH1imLP1MgSeHPRdfpJD1cxBjDnLmRc7nbRvzOcF+jDk/y7k5zn3QMmtUP T95ekJL5rqeiEEQyu14AHBE52F5IPOslSGD8ODCJstO6fktBy11k6RL6XI2xqsT6ixYBbR0l CbUst9ysgSmn+2ImV8FGFJFrjdGgp7OvF03ZOOFq98ZCCaCpk9VvgDyQ1wQqtBoC8PiofVVw 9nLz+foLStatsnT5Y0aDtTVL8SONDwgNwDoEXjaFlhgL3bjOGfBikhaiPzX+GeSq81wppXnn 8FVEucDfE08EP8XGgJuG9lIc/IVFns01KWWisIF/y/0tB7KWMBTpYzKTNqcBu/wISyV0OEcZ V0NyLL8a5UaMIH2ywpkZ0Uwz+GoUwLAGNtKpCNmdAo9pk5ApWN/QmME0EXgcgqx4XUXGJZcf zY4jRFhaP4hqW+04REyL1vO4jo5lkU8iZPjjCzDKFYZyY+hVIdaBjqyvE80YMuTq+ldfAS0k UF0cjzDQuAI54Y=
  • Ironport-sdr: rmfpZOR5hOyyw/KCVl/SPHPUO2hKWMAsT758kIGqDdyiOs/M9oC4jZuGt2rfolv9GYMciBaxUI bX/92yJoTxQAzeNARvxDhAzRT+t16UBV3cDr+Uc5B/cA2M38cWtZIIStaQIoUYqfZ3XI5EBRg3 FoCukvkZPZYJs2kwJt0zjzyot1vanT+ribP1a2O4I3QX/1ZdFpPPC8ekZia3t7XCWLzBq5gNIo nigpVUXLWMkhybysM5WsQUy6Y94WB3vCOxBXjHNukeJNjGXwcn62hGKAj9XlJqwbOdRSdJR9Z3 4yu6GFvUc8qScN932VIIbnJk

Your answer led me to the reconstruction tutorial.

I was using the wrong package for my needs.

Thanks for your patience and info,

Cheers

--

10:08, 7 July 2022, "Sebastien Loriot ( via cgal-discuss Mailing List)" <>:

how is it different to the other problem you posted and for which I
gave you an answer?

Best,

Sebastien.

On 7/7/22 03:03, "Scriven, David" ( via cgal-discuss
Mailing List) wrote:

 I have a problem in which there are 2D planes on which there are
 thousands of clusters of points (x,y coordinates) - the size of the
 clusters varies from many tens to many thousands of points and the
 shapes are variable. For every cluster I have to find the nearest
 neighbour edge-to-edge distance. My solution so far has been to identify
 the nearby clusters through their centroids and then do a nearest
 neighbour search between the  cluster of interest and each cluster that
 was  identified as nearby. I have to  be able to identify the nearest
 cluster so I can examine at its properties, so I cannot pool the data.
 
 
 I can see many ways that this approach could fail - if one doesn't
 search far enough or if the centroids are very far from the edge of the
 cluster (imagine two very elongated clusters, one above the other  that
 have their tips very close but their centroids very far apart).  This
 sort of scenario becomes more likely when studying the relationship
 between multi-clusters (clusters of clusters, where the formation is
 defined by some parameter).
 
 
 Can someone suggest a rapid, robust and reliable method that could solve
 this problem?
 
 
 I was wondering if there was a way to use a Delaunay triangulation on
 all the points and then, in some way, pick out individual clusters and
 look at the connections from the edge of that cluster, but it's not
 obvious to me how to make this work.
 
 
 David
 
 
 David Scriven, Ph.D. e-mail : <>Dept Cellular & Physiological Sci. ph: 604-822-7812 <tel:604-822-7812>
 2350 Health Sciences Mall, fax: 604-822-2316 <tel:604-822-2316>
 University of British Columbia, Vancouver, BC. V6T 1Z3, Canada
 
 
 --
 You are currently subscribed to cgal-discuss.
 To unsubscribe or access the archives, go to
 https://sympa.inria.fr/sympa/info/cgal-discuss
 


--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss





Archive powered by MHonArc 2.6.19+.

Top of Page