Subject: CGAL users discussion list
List archive
Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points
Chronological Thread
- From: Sebastien Loriot <>
- To: "KL ( via cgal-discuss Mailing List)" <>
- Subject: Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points
- Date: Thu, 7 Jul 2022 10:59:28 +0200
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-data: A9a23:cZ2KsKkF+ehAZC9Yb6FgbUno5gyzIERdPkR7XQ2eYbSJt1+Wr1Gzt xIWWmzXOf6NY2Twf4x2aYy/8kkBuJWDyNUySABsry08F1tH+JHPbTi7BhepbnnKdqUvb2o+s p5AMoGYRCwQZiWBzvt4GuG59RGQ7YnRGvykTrSs1hlZHWeIcg944f5Ys7N/09QAbeSRWVvX4 4ut+5KHYTdJ5hYtWo4qw/LbwP9QlK+q0N8olgRWiSdj4TcyP1FMZH4uDfnZw0nQGuG4LcbmL wr394xVy0uCl/sb5nxJpZ6gGqECaua60QFjERO6UYD66vRJjnRaPqrWqJPwZG8P4whlkeydx /126b62aTk7BpHJo/8tXBcAAX5uMoZJreqvzXiX6aR/zmXDenrohup0VQQ4YNde9eFwDmVDs /cfLVjhbDjZ37PwkO/9ELM1wJl5RCXoFNt3VnVI1jXeF/chXdbGR43F4NZZ2HE7gcUm8fP2P ppGNmczMESojxtnFVEpA7NjwMqUrFLYXhZ/tk3KgvIbyj2GpOB2+OG1bIC9lsaxbc5al0Ldq mPd9HniGTkBJdmHwHyE9Gitj6nBh0vGtJk6EbS58rt1mgTWyDFJThIRUlS/rL+yjUvWt89jx 1I8wXYMq4gM5nSXS+LmbxK2+GzbrhE3VI8FewEl0z2lxq3R6gefI2ELSD9dddAr3PPaoxR6h jdlePu5VVRSXK2ppWG1rejL8GvjUcQBBSpTOn9eFFptD8zL+dlr1nryosBf/LlZZ+AZ9Bn1y jGO6Tck3vAd0JRN2KK88lTKxTmro/AlrzLZBC2HDgpJDSsjPOZJgrBED3CFtp6sy67HFTG8U IAswZT20Qz3JcjleNaxaOsMBqq1wP2OLSfRh1Vid7F4qWnyoiX5J9oAuWAmTKuMDiriUW+5C KM0kVMBjKK/wFP3BUOKS9nsVJhwnPCI+SrND6mMNoomjmdNmP+vpXkyPyZ8Lkjil08jlaxXB HtoWZfEMJruMow+lGDeb75Fj9cDn3lirUuOG82T50n4idK2OS/NIZ9YYQDmRr1ovMus/l+Jm /4BbJDi40sEAIXDjtz/q9F7waYidihlW/gbaqV/Koa+H+aRMDh+UKCNmeJ9IN0NcmY8vr6gw 0xRk3RwkDLX7UAr4y3TApy6QL+wD5t5s1whOikgYQSh13Q5MNSg6a4ec908erx+rL5vyvt9T v8kfcScA6QXGm6XpWhFNZSt/pZ/cBmLhB6VO3X3bTU6ealmTVOb99LheDzp6yRTXDG8stEzo uH72w6CGcgDSg1uAdz4cvWqy1/t73ERlPgjDUTNK9hXPk7r9dEyeSD2i/Y2JeAKKAnClmPKj VbIXU9AqLCU8YEv8dTPiaSVlKuTErNzThhAAm3WzbeqLi2FrGeuxIl3VuzXLz3QUWXD/rr7O bdYwvT6B/0wnFhQtr16Hbs2n7k14MHipuMDwwlpQCfLYlCsBu8yK3WKx5MU5KhEx7scphHvH 0zSoJ9VPrKGPM6jG1kUfVJ3YuOG3PASuz/T8fVlfxmgtXEvpOKKARdIIh2BqC1BN78pYokr9 uEs5ZwN4Aulhxt2b9uL0nJO+2KXIiBSWqkrrMtBUoriiw5u1UsbJJKBUGn555aAb9gKOU4ve 2fGiK3HjrVa50zDb3tjSiSXjLQF3cwD6EJQ0VsPB1WVgd6Z1PU56xtcrGYsRQNPwxQbju9+N wCH7aGuyXliItupuCRCY4xoMwRIBRnc5VaojlVUzivWSE6nUmGLJ2o4UQpIEIb17EoEFgW3P pnBoIombdouVM701yo2H0VirpQPiPRvoxbalpnP89utRvEHjPmMvkNqTWUNohrjR8g2gSUrY AWsEPlYMcXGCMLbn0H350R2G1jdpNBo6VGumc1cwZ4=
- Ironport-hdrordr: A9a23:YRPPtqGe6TslCglopLqEy8eALOsnbusQ8zAXPjNKOHpom6uj5r yTdZUgpGLJYVMqMk3I9urwWpVoLUmsjqKdpLNhR4tKPzOW3VdATrsSjrcKqgeIc0afygce79 YZT0EXMrzN5DNB/KHHCWeDYq8dKZW8gcSVbCTlo0uFjzsGV0it1WhE48+gfHFLeA==
- Ironport-phdr: A9a23:8DpGvR+J4LqDQP9uWR61ngc9DxPPW53KNwIYoqAql6hJOvz6uci4Z wqGu6gm1A6BdL6YwsoMs/DRvaHkVD5Iyre6m1dGTqZxUQQYg94dhQ0qDZ3NI0T6KPn3c35yR 5waBxdq8H6hLEdaBtv1aUHMrX2u9z4SHQj0ORZoKujvFYPekcq62/qv95DSYwhEiyaxbLdvJ xiqsAvdsdUbj5F/Iagr0BvJpXVIe+VSxWx2IF+Yggjx6MSt8pN96ipco/0u+dJOXqX8ZKQ4U KdXDC86PGAv5c3krgfMQA2S7XYBSGoWkx5IAw/Y7BHmW5r6ryX3uvZh1CScIMb7Vq4/Vyi84 Kh3SR/okCYHOCA/8GHLkcx7kaZXrAu8qxBj34LYZYeYP+d8cKzAZ9MXXWlPUMheWCNPH42yc YUPAeoDMulEoIfwvEcOoBikCAWwGO/ixD1Fi3nr1qM6yeQhFgTG0RQ9Ed0Qq3vbts71NLsTU e+ryqnD0DPNb/RM2Tf874jIbg0qrPaXXbJ0dsrR00gvFwTZjlmKrIzlOyiY1usIs2eB7upgU fijhHIgqwF0uzWiwNonhYbViIwP0F/E6Tl5z5gvJd2+UEN2Y8OpHZVSuiyHNoZ6Xt4vTW9pt Ss1ybALu4O2cTYOxZkoxxDRa/6KfoyU7x/sVuufLzh1iWx4dL+xiRi/7Eytx+vhXce611ZKq zBKktjKtn0V1hzT7NKHSvpn8Uu71zaPzQbe4fxHL0AsjafXNYItz7oqmpcQsUnPBDH6lFvrg KOMdkgo5PCk5ufmb7n8pJKRNpV4hh/wP6gwgMCzHOQ1PwcIUmOG4+qzzqfj8lf8QLhSjv05j K3ZsJfCKMQevKG5AgtV3p8t6halEjuqydoYkHkZIF5fdxKHiI/pO17KIP/mF/uwn1OskDJzy /DHOL3uHInNI2DdnLv9ebtx8U1RxQopwdxB+Z5YF6sNLfLtVkPpsdzXFB45Mwi6w+b9D9V90 5sTWXmLAq+eKqPSsFiI5v41L+mJYI8Yozn9K/0/6P7viX81g0MSfa6s3ZcPbnC3BexpI1+Fb nr0ntcBDWAKsxIjQODykl2NTSZTZ2quX6I7/jw0FI2mAp3HRoy0nbOB3Ty7EYFLZmBdEVCBC mzodoWBW/cUci2eOM5hkjoeVbigUYAtzx+utBWpg4dhNffery0EqYr4hp8y/PzWjRh09DpuD s3b3XvKVHBxhmpPRjk42+d0rkV5j1uCyqNlmOcLKNpI+vl1XxcmYJ7A0/RhWZe1QRPEZt7PS VC8Q9zgDyt2VcM029ZJYkBzHJKpgRnHmiarGLQIjKfYOJthuIH4lzj9Ks16kC2ejPEJnlAgT sZfc2ahg+Zh9gGbDIHAlwCVlr2haL8HlAvE9WOCy2XGmEBDTE86GfHOUnkbI0fXtt/k/VjqT rm0CL1hPBEXmuCYLa4fUdDjhE5aRfrlcPDZeWO2hy/kHhKP3LKLcMzvf00S2SzcDA4PlAVFr iXODhQ3Gir0+zGWNzdpD1+6Jhq0qYGWyVu+R04wlESRalF5kqGy4lgTjOCdTPUa2vQFvj0go nN6BgX1xMrYXvyHoQcpZ6BAeZUl+l4SzmberQ16ItqlK4htg1cfd0J8uEa9nw5vBNB4mNMx5 Ggv0BI0LKuZ1F1bcDbNxpT3ILzQNi/3+DigbqfX3hfV19PFsrwX5qEerFPu9BqsClJk83hj1 IxN1GCA45zREAcIeZf4U0Jy6AIj4r+HOG8y4ITb0XAqOq6x2tPb8/QuAuZtihOpftMEdbiBC Be3CMoCQc6nNO0tnVGtKBMCJuFbsqAubYugcLOd1ainMfwF/nruhHlb4I17zkOH9jZtAu/O0 ZEfxviE3wyBHz7ihValu8rzlMhKfzYXVma4zCHlAsZWaMgQNc4QDWC0IsqrgNB6r5HoUn9cs lWkAhJO2cOkfwaTc02oxRdZhgwcpX2qnzf9ziQhyWl46PrCmnaUmqK/LkliWCYDXmRpgFbyL JLhitkbWBPtdA01jF6+4l68waFHpaN5Jm2VQEFSfiGwIXsxN8n4/reEfcNL74sl9CtNV+HpK 0ueTaT8pAdc1ifLEG5XxTR9fDav8Mac/VQymCeGIXB/oWCMM9p0wg3e48CaQPp50T8PRS0+g j7STAvZXZHh7ZCfkJHNtfq7XmSqW8hIcCXl+oiHsTOy+WxgBRDXc+mbotT8CkB61Cb604IvT iDUtFPnZZGt0a2mMOVhd00uBVnm6sM8FJss2oc3gZgR3zAdiPD3tTIclWDpMNJHn6f6RHUIT D8PhdXS5UDp1VZiIXSA24/iHi/Fk40xOp/gODpQh3h15tsCEKqO6b1YgSZ5xzjw5RncZ/Rwh HZVyPcj7mIbn/BcvQMsyiuHBbVBVUJcPCHqi1GJ94Xk9PQRNDvpK+LpkhckzrXDRPmYrwpRW Wj0YMInFC50tYBkNU7UlWb08sficcXRatQasluVlQ3Bhq5bMsFU9LJCiCx5NGb6pXBgxfQ8i EkkxpW9pomANyNo+Iq2BxdZMnv+YMZZqVSPxe5O292b2YyiBMArATEMRprvUbStFBodsP3mM 0CFFzh2+RL5UfLPWASY7klhtXfGFZumYmqWKHcuxtJnXBCBJUZbjVNcTHAgk5U+DAzv2N35f RIz+GUK/lCh4EgpqKogJ1zlX2zYvgvtdjokVM3VMk9N9g8br0bNbZ7Fs6QqTnkepMH+6lTKc DDTZhwUXz9VHBbfXBa6YOHovZ6Zoo36TqK/N6ecP+vI8LQEEa/OndX1isNn52reaJvJZCUzS a1jnBIEBygxGtyFyWpVDXVL0XucNYjD407sn08/5sGnrKa0BES2v9bJU/0KdowxsxGu3fXab 77W3Xkmb2YejtRWnDfJ0ORNhQFJzXg/K3/1V+xH7HCoLuqYm7cLXURDOmUjaY0RtfJ6hk4UZ obako+njOcmyKNlTQ4UDxq53Zj4Lc0SfzPnbQ2BXh3acu/cY2WMmpCSA+v0X7RUiK88WwSYn zGdHgejOz2Ck2KsTBWzKaRXizndOhVCuYa7exIrCG75TdugZAfpeNlwxSY7x7E5nBaofSYVL CR8fkVRr7aR8TIQg/NxHHZE52ZkKu/MkjiQ7u3RIJIb+fVxBSE8m+Vf6XU8g7xbiUMMDORyg zfXp8VyrkuOl+COzn94SkMLpGsRwo2MukpmNOPS8ZwBEXfI8RQR7HmBXhQHo9w2b7+n86tUy 9XJiOfyMGIYq4OSrZZaXZKNbp/dYx9DeVLzFTXZDRUIV2uuPGDb3AlGle2Ks2aStt48o4Ttn 5wHTvlaUkY0H7UUEBcAfpRKLZFpUzcjibPegtQP4C/0tx3WXsRdotbCUtqdBPzuLHCSirwON H5qifvoaJ8eMIH2wRkocl5hgIHDAFbdR/hIqyxlKxAu+QBDrSI4QWo01EboLAiq5TVAcJz81 g5zgQx4b+M38T7q6FpiPVvGqhw7l0wpkMnkizScGNYeBKi1VIBSTSHzshpoWnseawlwZAy22 0djMWWcL1qwp75pdGQulxWF/JUSQ7hTSqpLZBJWzvaSNa1A7A==
- Ironport-sdr: /fdwFUkNUGwi7E7JmCZSMEtO1n6+SbZ11zCLGgoZ/8zDddxq6T4X549JyVsxRWG6atHc1pLK2S PFzUMnYDLsyEsaCGI1Lm3XT5Nm3oWADSUHcsvCh+Ilr3tiOAcdp/lJWmWqPiUxPrL1aHpPMkSz wFb7TyLjioXuYuEWUvzAxM1GHsUfQNeb9iddA63umdA+tEn07QWd44pxLNKpNgiC+YUnWGcokQ 5W/cZaXuQwp4tB3j+e24WdNWhZXstdQM47JbMxzG/VTGYHh5OqX1HB3eEA5c4nPQEZEcDxHezg +a/ubXbcr1WPHggvhVaTNkXO
I was answering to another thread ;)
Have a nice day!
Sebastien.
On 7/7/22 10:13, KL ( via cgal-discuss Mailing List) wrote:
Your answer led me to the reconstruction tutorial.
I was using the wrong package for my needs.
Thanks for your patience and info,
Cheers
--
10:08, 7 July 2022, "Sebastien Loriot ( via cgal-discuss Mailing List)" <>:
how is it different to the other problem you posted and for which I
gave you an answer?
Best,
Sebastien.
On 7/7/22 03:03, "Scriven, David" (
<> via cgal-discuss
Mailing List) wrote:
I have a problem in which there are 2D planes on which there are
thousands of clusters of points (x,y coordinates) - the size
of the
clusters varies from many tens to many thousands of points and
the
shapes are variable. For every cluster I have to find the nearest
neighbour edge-to-edge distance. My solution so far has been
to identify
the nearby clusters through their centroids and then do a nearest
neighbour search between the cluster of interest and each
cluster that
was identified as nearby. I have to be able to identify the
nearest
cluster so I can examine at its properties, so I cannot pool
the data.
I can see many ways that this approach could fail - if one
doesn't
search far enough or if the centroids are very far from the
edge of the
cluster (imagine two very elongated clusters, one above the
other that
have their tips very close but their centroids very far
apart). This
sort of scenario becomes more likely when studying the
relationship
between multi-clusters (clusters of clusters, where the
formation is
defined by some parameter).
Can someone suggest a rapid, robust and reliable method that
could solve
this problem?
I was wondering if there was a way to use a Delaunay
triangulation on
all the points and then, in some way, pick out individual
clusters and
look at the connections from the edge of that cluster, but
it's not
obvious to me how to make this work.
David
David Scriven, Ph.D. e-mail :
<> <
<>>Dept Cellular & Physiological Sci.
ph: 604-822-7812 <tel:604-822-7812 <tel:604-822-7812>>
2350 Health Sciences Mall, fax: 604-822-2316 <tel:604-822-2316
<tel:604-822-2316>>
University of British Columbia, Vancouver, BC. V6T 1Z3, Canada
--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss
<https://sympa.inria.fr/sympa/info/cgal-discuss>
-- You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss
<https://sympa.inria.fr/sympa/info/cgal-discuss>
--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss
- [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, Scriven, David, 07/07/2022
- Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, Sebastien Loriot, 07/07/2022
- Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, KL, 07/07/2022
- Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, Sebastien Loriot, 07/07/2022
- Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, Scriven, David, 07/07/2022
- Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, KL, 07/07/2022
- Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points, Sebastien Loriot, 07/07/2022
Archive powered by MHonArc 2.6.19+.