Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points


Chronological Thread 
  • From: "Scriven, David" <>
  • To: "" <>
  • Subject: Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points
  • Date: Thu, 7 Jul 2022 08:50:30 +0000
  • Accept-language: en-GB, en-CA, en-US
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
  • Ironport-data: A9a23:8NN9N6P2ZPVbMaHvrR3xlsFynXyQoLVcMsEvi/4bfWQNrUokg2MFy DEeCz/SbvjeNGCnKtEgYY2zoRlXu5HSyIQ2TQZtpSBmQlt08seUXt7xwmUcn8+xwmwvaGo9s q3yv/GZdJhcokf0/0vraP65xZVF/fngbqLmD+LZMTxGSwZhSSMw4TpugOdRbrRA2LBVOCvQ/ 4KoyyHjEAX9gWQsbTpLs/vrRC5H5ZwehhtJ5jTSWtgW5Dcyp1FNZLoDKKe4KWfPQ4U8NoZWk M6ak9lVVkuAl/scIovNfoTTKyXmcZaLVeS6sUe6boD56vR0Soze5Y5gXBYUQR8/ZzxkBLmdw v0V3XC7YV9B0qEhBI3x+vSXes1zFfQuxVPJHZSwmeiW1GDAb3np/+hvM0BmJ9JbwONPXm4bo JT0KBhVBvyCr/mz3Kr9T+BtgoI+JsKtN4p3VnNIlGmfUatgG8yFEvqiCdxwhV/cguhCFOjfa 4wCYiBuchnGSwBFMREcAfrSmc/x3SSgLWUJ8AP9Sawf0nKCzQxf6rHRHeHpQNKOSpRsjxeFn zeTl4j+KlRAXDCF8hKO/Xuow+POhijmQ5k6Fbui9/csjkf7+4AIIBkcTVS/r+Ky0hexQM5Hc xVR9ywytvBrsUL2C8fnURK8vXPBsBobUsYWCPwh9AyI0ezV/0CEDGNCRTcphMEaifLajAcCj jeh9+4FzxQx2FFJYRpxLoupkA4=
  • Ironport-hdrordr: A9a23:5hPhmar3T5fYLYw1+8rmUxIaV5oEeYIsimQD101hICG9Kvbo8P xG785rsyMc6QxhIk3I9urwW5VoLUmxyXcx2/h0AV7AZniahILLFvAB0WKK+VSJcEeSygce79 YET0EXMqyNMbEQt6jHCXyDc+rIt+PnzEnHv4jjJjxWPHhXgulbnn9E4yigYzZLeDU=
  • Ironport-phdr: A9a23:KFUTHx28ZRIFKcvQsmDOXwwyDhhOgF0UFjAc5pdvsb9SaKPrp82kY BaEo6wz0RSRAs3y0LFts6LuqafuWGgNs96qkUspV9hybSIDktgchAc6AcSIWgXRJf/uaDEmT owZDAc2t360PlJIF8ngelbcvmO97SIIGhX4KAF5Ovn5FpTdgsip2e2+4YDfbgRIiTayfb9/L gi9oBnMuMURnYZsMLs6xAHTontPdeRWxGdoKkyWkh3h+Mq+/4Nt/jpJtf45+MFOTav1f6IjT bxFFzsmKHw65NfqtRbYUwSC4GYXX3gMnRpJBwjF6wz6Xov0vyDnuOdxxDWWMMvrRr0yRD+s7 bpkSAXwhSkHKTA37X3XhMJzgqJVoh2hpgBwzIHPbY6PKPZ+fLnQcc8GSWZcWMtaSixPApm7b 4sKF+cNM/tWoJXnp1sPsxuxGw+sCPvywTFGnHD2w6w63PkvHQrb2wEvAsgBsGrVrNroLqsSS vy6zLPJzTXdcfxW3yzw6JXTfR89u/2DQah/fNPXxEIyGAzLkk+eppb5PzOJyOsNqW6b4vJiW O6yl2MqtwN8rzuyy8oilIXHiYwYxk3Y+Shk3Yo7K8O1RUBmbNOrHpVduS6UOYV2TM0sQGxlu zo3x78YtZO0eiUB1Zopxxnaa/OdcoiI5AruVOeXITdihXJqYqizhxio8UWm1+byVdG03U5Xo idKjNXArG0B2wDd58SdVPdx4kms1SyL2gzL9O1IPUI5mbDaJpI73LI9mJQevV7eEiL4lkj7i rKdeF8+9eiy8evnZ63rpp+COI9wjQHzKrohmtehAesiNQgOQnSb9fqm2L3m50L5QbFKguQsk qbHtJDVP8QaqrSkAwBOzokv8QqwAC2+3NQZm3kIMk5FdQqag4XmJV3COu30Aeuxjli2jjtn2 /7LMqflD5nVK3jMirbhfbJz605GzwozyMhS6I9OBbEfIfL8R1X9tMfEAR8jMgy03fjoCNNm2 4MDQm2AHrWVP7/IvlOQ4OIgOPGDZJUJtzblN/gl+/nugGcklVMFZ6mmwYMXaGykHvRhO0iWf XXsjc0FEWsTowU+Tffqh0GfUT5IfHa/RLk85zE+CIK+F4jPXIGtgLqb3Ce6BJJafG5GCkrfW UrubJiODvcQdDqJcIgmiS0BTbHnSok71BjouhW90KtiNuOT+ysWstXo29FxouHSjhov7icnM sKGzmutU2Rwy2MUWyctjuc4ul140l7F0K5igvUeG8YU/OJMSg59NJjSyKtxBNn2Hw7AZdyUU 031f9O9HDsNQ8Itlt8Sf15mSZLllQHGxyPsArkPlrXNCoZz6bPZx3G2JsBzzDHN26AlylUnW cBSLnb1uqkqvQPcDoqMn0SCnLuxbowd2jTM/SGN1yDG6EpXWQo1XaTeVm0EfWPXq8747wXMV en9J64gN14L8sWYK7VHbJmhoVxYRfupcIDSanywlyGrDgyJ2L6KRJfgcCMW1XOOWwA/jwkP8 CPeZkAFDSC7rjeGZNQPPVfmYke2tPJ7tGv+VEg/iQeDc0xm0bOxvB8Tn/2VDf0JjfofoCl0j TJyER6m2s7OTcKarl9tdbtdbZUm601Gy2/fnxF3NdqrJvMqnUYQJjx+pFimzBBrEsNFmMkuo mktyV9+ILyZ3BVafCmZw532EqDdIS/59UPncLbYj2nXy83e4aIT8LI4plHk6RmuDVYn+m573 sN93mCC75LXEFBUVJvwVgMt+hxztvfHaCJ77Iq8OWREF66yv3eC3tsoALFg0RO8Z5JFN6jCE gbuEsocDszoKeowmlHvYAhWdOZVvLU5Oc+rbZ7kkOaiIfpgkTS6jG9G/JE100SC8DB5Q/LJ2 JBNyu+R3w+OXTPxxFm7tcW/lYdBbDAUVm2xrEqsTIJYeKx+O50AE2awLsuf2991wZXkGjZZ+ FOlG1IayZqxYxPBJ1f53ABWyQEWuSn+xXH+lmQv1Wtx9ezOj0msi6z4eREKO3BGXjxnhFboe 82viswCGVKvZE4vnQek4kDzw+5aor5+Ji/dWxQtHWC+Imd8X6+3rrfHbdRI7cZivSxJUej6e luAS6DwpTMH2SilFGIUl1VZP3m6/470mRB3kjfXIH9trXafYspqxAnS4vTBT/UX1TNMF0waw XHHQ1O7Odeu59CdkZzO5/u/W2yWXZpWaSD3zImEuUNX/EVSCAak17C2k9zjS00h1DPjksNtX mPOpQr9ZY/i0+K7N/hmdw9mHg20581/E4B42ow+4fNYkXQTmJSZu2EMi2btPNNzxKj1KnEED TIG2N/a5gH51VYrdy7TgduhDTPHmpAnNpGzeSsO1zg47txWBavxjvQMhiZzrlei7ErQbfV7g jYB2K4r4X8ejfsOvVllxSGcD7YOWEhAaHWwzVLRt4v49v0MIjf8FNr4nFBzlt2gEryY9wRVW XKjP4wnATc19MJ0dlTFzHz07IjgPtjWd9Ma8BOOwHKix6BYLow8kv0SiG9pI2X46DcpwvA6g Vp11ou7ooWBA3hn9+SyC1QLU1+9L9NW4TzrgatEy4ya1p6uEtN6ES8KQpbuZe+iG3QZvL60U mTGWC15oXCdF73FGAaZ40oztHPDHaegMHSPLWUYx9FvF1GNYVZSiwcOUHAmj4Y0Q0q0kdf5f h4ztVVzrhbo7wFBweVyO1zjX3fD8U22PywsRsHXLQIKvFgaoRuId5bCqLMsVyBAos/491PLe jbdPEIRaANBEk2cWwK6ZebotYOGqK7BVqK/N6ecOO7R77wEEazOmMzn05M6rW/XaYPfZD85S aNjvygLFXFhR5aAwGpJG3ZRzGScMIaavEvuo3Yo6JDltq+tAVi+rYqXV+kLaoopq0rw2vnFa bf15m4xKC4EhMpXmjmYkv5DgBhI12lvb2X/SO9f836XCvuJxOkLXlYac38hbZAXqfJmmFAUZ 4iF07aXnvZ5lqJnUgwaEwy73Jj0PIpTfT31NUubVh/Qa/LWf3uRmZGxOPntAbxI0LcN7EL26 WzdSRWzeG3Yz1yLH1iuKb0e1X3BekUG48fjNEs3QWn7EIC/Nkf9aYcsy2NwnuR8h2uWZzdAa 34lKxgL/ubWt34B55c3U21Zsig8cbPCwn7CqbCBddBP6qYjAzwoxbsGujJjk+ATtXgbAqUux myJ9pZvuw30y7XVjGM/C1wX+20N2Ofp9Q1jIfmLr8UaHy+cp1RXtT7WV1wLv4c3U4G1/fkIk Z6VzPm1dn9D646GpJdGQZGMc4TdaCFnYV2yQFu2REMEVWL5bD2FwRUFy7fIrSfT89A7ssS+w sJQDO8EEgZvSbVDUBQiRoxKIY8rDGl8wPjL04hSujzg5E7YQMEQ1nzefsqbGu6naDOQjL0eI gAN3au9N4MYcIvyx01lbFB+2oXMAUvZG95X8GVtaQo9oUMF93YbLCV7w0X+dgak+2MeD9a5h QA/jRZiO6Io/Tbopk06IlPb4jY6mw86kJ3pjCuQfzj4MKqrOOMeQ3Oo7Q5oasi9GV4uK1z6l FcsLDreQrNNk7ZsPXtmjgPRo9oHGPJRS7FFfA5FxfyTYKZNsxwUoSGmyElboOrdXMI+zk1zK cXq9SobnVMwCbx9bbbdL6dI0FVK06eHvyvyk/s03BdbPUEGtmWbZC8PvkUMcLggPSuhuOJ2u mng03NOfnYBU/0yr7dk7EQ4bq6Mxjzh3/hYIVqwKeGZB76TsC7LnITbJzF4nlNNjERD8bVsh I07dFGIUkk00LaLPxkSK8PFNB0PKc9b9XyWZyuKuPSL3Jh+eY60XLONL6fGpOMfhUSqGxwsF oIH45EaH5Wi50rfKN/uML8PzRh+rBSuPliOC+5FPQ6aiDpS6d/q14d5hMMOQ1NVSXU4Kyi84 azb4xMnkObWFsljeW8UB8MNfiU/XMnw88a2l2lKB3+827BAoOBjxzLnuC3XESWmKd9qZfPRf x5oAcDw5D80taO/2we/GnD2Omvxc99r6Ien1A==
  • Ironport-sdr: Cun8526XZCKMVvEVY9of6/lBqfFuaLIJ+MvyHqmDISCR03dIQdglDD29xsboZdMiZlaTew871m pLZeDddsC1hD7zlSS+IjUZYpN/hZPRw+y6oo6LeDl8b23Qj3E3MGNTEV6rNi9vmqZ/TSywNoA2 Fj7wf+UCgrzGYsU6k+CUTAfHBlhunda0Llx4IUjlqlgC6aFMnZg9Rpdbs6ta8KGlE+KiDWFHV4 VMqPrpXSBbx6aZ9eC/WU/W/CjVcTdYoDeIw/CSPzdxxBlfPRExS7mEETClaLi75TgzMPHglJ5u srPXF/xF/3myt5/BmXMhXoRx


They are related - the first problem was  a step in the construction of the multi-clusters - (assigning a number of clusters to a convex hull - your solution worked, thank you). Now I'm trying to find an efficient way to to get the nearest neighbour distance between these clusters. I've reduced the problem to finding nearby clusters to the the cluster of interest and then measuring the nearest neighbour distances between the each cluster of the group and the cluster of interest - I need to find which is the nearest cluster as well. What I do works, but I can see where it might fail.


I probably should rephrase it - I need an efficient and robust way to find the neighbouring clusters of a cluster. The rest I do already.


David Scriven, Ph.D. e-mail : Dept Cellular & Physiological Sci. ph: 604-822-7812 2350 Health Sciences Mall, fax: 604-822-2316 University of British Columbia, Vancouver, BC. V6T 1Z3, Canada


From: <> on behalf of Sebastien Loriot <>
Sent: 07 July 2022 01:07:58
To:
Subject: Re: [cgal-discuss] Calculating minimimum edge to edge distance between large clusters of points
 
[CAUTION: Non-UBC Email]

how is it different to the other problem you posted and for which I
gave you an answer?

Best,

Sebastien.

On 7/7/22 03:03, "Scriven, David" ( via cgal-discuss
Mailing List) wrote:
> I have a problem in which there are 2D planes on which there are
> thousands of clusters of points (x,y coordinates) - the size of the
> clusters varies from many tens to many thousands of points and the
> shapes are variable. For every cluster I have to find the nearest
> neighbour edge-to-edge distance. My solution so far has been to identify
> the nearby clusters through their centroids and then do a nearest
> neighbour search between the  cluster of interest and each cluster that
> was  identified as nearby. I have to  be able to identify the nearest
> cluster so I can examine at its properties, so I cannot pool the data.
>
>
> I can see many ways that this approach could fail - if one doesn't
> search far enough or if the centroids are very far from the edge of the
> cluster (imagine two very elongated clusters, one above the other  that
> have their tips very close but their centroids very far apart).  This
> sort of scenario becomes more likely when studying the relationship
> between multi-clusters (clusters of clusters, where the formation is
> defined by some parameter).
>
>
> Can someone suggest a rapid, robust and reliable method that could solve
> this problem?
>
>
> I was wondering if there was a way to use a Delaunay triangulation on
> all the points and then, in some way, pick out individual clusters and
> look at the connections from the edge of that cluster, but it's not
> obvious to me how to make this work.
>
>
> David
>
>
> David Scriven, Ph.D.                 e-mail :  <>Dept Cellular & Physiological Sci. ph: 604-822-7812 <tel:604-822-7812>
> 2350 Health Sciences Mall, fax: 604-822-2316 <tel:604-822-2316>
> University of British Columbia, Vancouver, BC. V6T 1Z3, Canada
>
>
> --
> You are currently subscribed to cgal-discuss.
> To unsubscribe or access the archives, go to
> https://sympa.inria.fr/sympa/info/cgal-discuss
>

--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss





Archive powered by MHonArc 2.6.19+.

Top of Page