coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Param Jyothi Reddy <paramr AT gmail.com>
- To: coq-club AT pauillac.inria.fr
- Subject: [Coq-Club] symmety in leibniz equality
- Date: Thu, 13 Jan 2005 10:55:01 +0530
- Domainkey-signature: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:reply-to:to:subject:mime-version:content-type:content-transfer-encoding; b=Otpa55+coN6ecmWm30DpL8sakMYGLvJqjebePzmtIM61mTK2TWw69yR71HeU6vwN3Dzttv1BuogvsU0quLBXafxolZTvmdOUNC0GLQI74aHx8rUCkAuv2hh8seppM4pJtMDUYPL1xtBJKhFYmuoktRwwEmwEanPfNxU3Zh5eefc=
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hi all, I was trying to understand how in intutionistic logic
(forall P)(P(x)->P(y)) |- (forall P)(P(y)->P(x))
is true. In classical logic this follows from (not P->not Q |- P->Q)
So i took a look at how Coq proves this.
(http://www.labri.fr/Perso/~casteran/CoqArt/depprod/SRC/leibniz.v)
i got
leibniz_sym < intros a b H Q.
1 subgoal
A : Set
a : A
b : A
H : forall P : A -> Prop, P a -> P b
Q : A -> Prop
============================
Q b -> Q a
leibniz_sym < apply H.
1 subgoal
A : Set
a : A
b : A
H : forall P : A -> Prop, P a -> P b
Q : A -> Prop
============================
Q a -> Q a
I am unable to understand how apply H resulted in Q a-> Q a. (My
expectation was H applied to Q would be Q a -> Q b)
Can someone throw more light on this and how to prove symmetry?
Param
- [Coq-Club] symmety in leibniz equality, Param Jyothi Reddy
- Re: [Coq-Club] symmety in leibniz equality, Remi Vanicat
- Re: [Coq-Club] symmety in leibniz equality,
Lionel Elie Mamane
- Re: [Coq-Club] symmety in leibniz equality, Pierre Casteran
Archive powered by MhonArc 2.6.16.