coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Remi Vanicat <remi.vanicat AT gmail.com>
- To: Param Jyothi Reddy <paramr AT gmail.com>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] symmety in leibniz equality
- Date: Thu, 13 Jan 2005 08:29:39 +0100
- Domainkey-signature: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:reply-to:to:subject:cc:in-reply-to:mime-version:content-type:content-transfer-encoding:references; b=LH39llcV0AYYKMayQ/UFYPdYS/kH9zTJsHFkDgfMnq2s/z1VUxArIxFAznyOgDerFWBBPXzm7av1wfpuiWEXFkdRKH8gEZXqkS5PWl/AWAssQYvQIbyPsK3BU/cnnIkikbQDaGL7LMnubisyRfi3ahxI1t87HwqNAWGFCz0OIRc=
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
On Thu, 13 Jan 2005 10:55:01 +0530, Param Jyothi Reddy
<paramr AT gmail.com>
wrote:
> Hi all, I was trying to understand how in intutionistic logic
> (forall P)(P(x)->P(y)) |- (forall P)(P(y)->P(x))
> is true. In classical logic this follows from (not P->not Q |- P->Q)
>
> So i took a look at how Coq proves this.
> (http://www.labri.fr/Perso/~casteran/CoqArt/depprod/SRC/leibniz.v)
>
> i got
>
> leibniz_sym < intros a b H Q.
> 1 subgoal
>
> A : Set
> a : A
> b : A
> H : forall P : A -> Prop, P a -> P b
> Q : A -> Prop
> ============================
> Q b -> Q a
>
> leibniz_sym < apply H.
> 1 subgoal
>
> A : Set
> a : A
> b : A
> H : forall P : A -> Prop, P a -> P b
> Q : A -> Prop
> ============================
> Q a -> Q a
>
> I am unable to understand how apply H resulted in Q a-> Q a. (My
> expectation was H applied to Q would be Q a -> Q b)
Well, we have for all P, P a -> P b
let P be (fun x => Q x -> Q a)
then we have P a -> P b
that is (Q a -> Q a) -> (Q b -> Q a)
It is what coq has done when you apply H to the Q b -> Q a goal.
- [Coq-Club] symmety in leibniz equality, Param Jyothi Reddy
- Re: [Coq-Club] symmety in leibniz equality, Remi Vanicat
- Re: [Coq-Club] symmety in leibniz equality,
Lionel Elie Mamane
- Re: [Coq-Club] symmety in leibniz equality, Pierre Casteran
Archive powered by MhonArc 2.6.16.