coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Casteran <pierre.casteran AT labri.fr>
- To: Marko Malikovi� <marko AT ffri.hr>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] Subset of natural numbers
- Date: Wed, 05 Sep 2007 09:01:55 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hi,
From a practical point of view, it is easy to prove that your definitions are equivalent. I don't know if that
is the kind of answer you expect.
Regards,
Pierre
Inductive in_subset : nat -> Prop := in_subset_def : forall x : nat,
1<=x<=5 -> in_subset x.
(* But, for my needs is more appropriate to have definition like this:*)
Inductive in_subset' : nat -> Prop :=
| C1 : in_subset' 1
| C2 : in_subset' 2
| C3 : in_subset' 3
| C4 : in_subset' 4
| C5 : in_subset' 5.
Hint Constructors in_subset in_subset'.
Lemma L1 : forall n, in_subset n -> in_subset' n.
Proof.
destruct 1.
assert (x=1 \/ x=2 \/ x = 3 \/ x=4 \/ x=5).
Require Import Omega.
omega.
decompose [or] H0 .
rewrite H1;auto.
rewrite H2;auto.
rewrite H1;auto.
rewrite H2;auto.
rewrite H2;auto.
Qed.
Lemma L2 : forall n, in_subset' n -> in_subset n.
Proof.
intros n Hn;case Hn;auto with arith.
Qed.
Marko Malikoviæ a écrit :
Greetings,
I need to work with small subset of natural numbers, from 1 to 5.
Normally, I can define it in this way:
Inductive in_subset : nat -> Prop := in_subset_def : forall x : nat,
1<=x<=5 -> in_subset x.
But, for my needs is more appropriate to have definition like this:
Inductive in_subset : nat -> Prop :=
| C1 : in_subset 1
| C2 : in_subset 2
| C3 : in_subset 3
| C4 : in_subset 4
| C5 : in_subset 5.
Is something theoretically (from view of Cic) wrong with this kind of
definitions?
Thank you very much and greetings,
Marko Malikoviæ
--------------------------------------------------------
Bug reports: http://logical.futurs.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
- [Coq-Club] Subset of natural numbers, Marko Malikoviæ
- Re: [Coq-Club] Subset of natural numbers, Pierre Casteran
- Re: [Coq-Club] Subset of natural numbers, Marko Malikoviæ
- Re: [Coq-Club] Subset of natural numbers,
roconnor
- Re: [Coq-Club] Subset of natural numbers,
Marko Malikoviæ
- Re: [Coq-Club] Subset of natural numbers, roconnor
- Re: [Coq-Club] Subset of natural numbers,
Marko Malikoviæ
- Re: [Coq-Club] Subset of natural numbers, Pierre Casteran
Archive powered by MhonArc 2.6.16.