Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Need advice (proof about Huntington's postulates)

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Need advice (proof about Huntington's postulates)


chronological Thread 
  • From: Benjamin Werner <benjamin.werner AT inria.fr>
  • To: Edsko de Vries <devriese AT cs.tcd.ie>
  • Cc: Coq Club <coq-club AT pauillac.inria.fr>
  • Subject: Re: [Coq-Club] Need advice (proof about Huntington's postulates)
  • Date: Mon, 21 Jan 2008 15:46:07 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Le 21 janv. 08 à 15:13, Edsko de Vries a écrit :

On Mon, Jan 21, 2008 at 02:40:40PM +0100, Pierre Casteran wrote:

I dont't know if it helps, but if you add some notion of "value" and
computation,
[...]

Thanks very much--nice and easy solution! Much appreciated.

Can you explain (intuitively) why a direct solution is not possible (or
more difficult?)

You can try o prove the property directly, but you will get stuck on the case
of transitivity.

forall a b c, ...

You then have a = true, b = false, but you do not know anything else
about c. So you would need a stronger induction hypothesis to go on.

Knowing there exists a normal form probably can be understood as
some way to strengthen the IH.

Actually, using normal forms to reason about algebraic equalities is
quite common and quite a lot of work has been devoted to this topic.

Cheers,


Benjamin





Archive powered by MhonArc 2.6.16.

Top of Page